Publications

2013
Shamis Y, Silva EA, Hewitt KJ, Brudno Y, Levenberg S, Mooney DJ, Garlick JA. Fibroblasts derived from human pluripotent stem cells activate angiogenic responses in vitro and in vivo. PLoS One. 2013;8 (12) :e83755.Abstract
Human embryonic and induced pluripotent stem cells (hESC/hiPSC) are promising cell sources for the derivation of large numbers of specific cell types for tissue engineering and cell therapy applications. We have describe a directed differentiation protocol that generates fibroblasts from both hESC and hiPSC (EDK/iPDK) that support the repair and regeneration of epithelial tissue in engineered, 3D skin equivalents. In the current study, we analyzed the secretory profiles of EDK and iPDK cells to investigate the production of factors that activate and promote angiogenesis. Analysis of in vitro secretion profiles from EDK and iPDK cells demonstrated the elevated secretion of pro-angiogenic soluble mediators, including VEGF, HGF, IL-8, PDGF-AA, and Ang-1, that stimulated endothelial cell sprouting in a 3D model of angiogenesis in vitro. Phenotypic analysis of EDK and iPDK cells during the course of differentiation from hESCs and iPSCs revealed that both cell types progressively acquired pericyte lineage markers NG2, PDGFRβ, CD105, and CD73 and demonstrated transient induction of pericyte progenitor markers CD31, CD34, and Flk1/VEGFR2. Furthermore, when co-cultured with endothelial cells in 3D fibrin-based constructs, EDK and iPDK cells promoted self-assembly of vascular networks and vascular basement membrane deposition. Finally, transplantation of EDK cells into mice with hindlimb ischemia significantly reduced tissue necrosis and improved blood perfusion, demonstrating the potential of these cells to stimulate angiogenic responses in vivo. These findings demonstrate that stable populations of pericyte-like angiogenic cells can be generated with high efficiency from hESC and hiPSC using a directed differentiation approach. This provides new cell sources and opportunities for vascular tissue engineering and for the development of novel strategies in regenerative medicine.
Kearney CJ, Mooney DJ. Macroscale delivery systems for molecular and cellular payloads. Nat Mater. 2013;12 (11) :1004-17.Abstract
Macroscale drug delivery (MDD) devices are engineered to exert spatiotemporal control over the presentation of a wide range of bioactive agents, including small molecules, proteins and cells. In contrast to systemically delivered drugs, MDD systems act as a depot of drug localized to the treatment site, which can increase drug effectiveness while reducing side effects and confer protection to labile drugs. In this Review, we highlight the key advantages of MDD systems, describe their mechanisms of spatiotemporal control and provide guidelines for the selection of carrier materials. We also discuss the combination of MDD technologies with classic medical devices to create multifunctional MDD devices that improve integration with host tissue, and the use of MDD technology in tissue-engineering strategies to direct cell behaviour. As our ever-expanding knowledge of human biology and disease provides new therapeutic targets that require precise control over their application, the importance of MDD devices in medicine is expected to increase.
Ali OA, Tayalia P, Shvartsman D, Lewin S, Mooney DJ. Inflammatory cytokines presented from polymer matrices differentially generate and activate DCs in situ. Adv Funct Mater. 2013;23 (36) :4621-4628.Abstract
During infection, inflammatory cytokines mobilize and activate dendritic cells (DCs), which are essential for efficacious T cell priming and immune responses that clear the infection. Here we designed macroporous poly(lactide-co-glycolide) (PLG) matrices to release the inflammatory cytokines GM-CSF, Flt3L and CCL20, in order to mimic infection-induced DC recruitment. We then tested the ability of these infection mimics to function as cancer vaccines via induction of specific, anti-tumor T cell responses. All vaccine systems tested were able to confer specific anti-tumor T cell responses and longterm survival in a therapeutic, B16-F10 melanoma model. However, GM-CSF and Flt3L vaccines resulted in similar survival rates, and outperformed CCL20 loaded scaffolds, even though they had differential effects on DC recruitment and generation. GM-CSF signaling was identified as the most potent chemotactic factor for conventional DCs and significantly enhanced surface expression of MHC(II) and CD86(+), which are utilized for priming T cell immunity. In contrast, Flt3L vaccines led to greater numbers of plasmacytoid DCs (pDCs), correlating with increased levels of T cell priming cytokines that amplify T cell responses. These results demonstrate that 3D polymer matrices modified to present inflammatory cytokines may be utilized to effectively mobilize and activate different DC subsets in vivo for immunotherapy.
2012
Kim WS, Mooney DJ, Arany PR, Lee K, Huebsch N, Kim J. Adipose tissue engineering using injectable, oxidized alginate hydrogels. Tissue Eng Part A. 2012;18 (7-8) :737-43.Abstract
Current treatment modalities for soft tissue augmentation which use autologous grafting and commercially available fillers present a number of challenges and limitations, such as donor site morbidity and volume loss over time. Adipose tissue engineering technology may provide an attractive alternative. This study investigated the feasibility of a degradable alginate hydrogel system with commercially available cryopreserved human adipose stem cells (hADSCs) to engineer adipose tissue. hADSCs were differentiated into adipogenic cells, and encapsulated in alginate hydrogels made susceptible to hydrolysis by partial periodate oxidation of the polymer chains. Cell laden gels were subcutaneously injected into the chest wall of male nude mice, and a cell suspension without alginate served as control. After 10 weeks, specimens were harvested and analyzed morphologically, histologically, and with immunoblotting of tissue extractions. Newly generated tissues were semitransparent and soft in all experimental mice, grossly resembling adipose tissue. Analysis using confocal live imaging, immunohistochemisty and western blot analysis revealed that the newly generated tissue was adipose tissue. This study demonstrates that degradable, injectable alginate hydrogels provide a suitable delivery vehicle for preconditioned cryopreserved hADSCs to engineer adipose tissue.
La Gerche A, Burns AT, Mooney DJ, Inder WJ, Taylor AJ, Bogaert J, Macisaac AI, Heidbüchel H, Prior DL. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J. 2012;33 (8) :998-1006.Abstract
AIMS: Endurance training may be associated with arrhythmogenic cardiac remodelling of the right ventricle (RV). We examined whether myocardial dysfunction following intense endurance exercise affects the RV more than the left ventricle (LV) and whether cumulative exposure to endurance competition influences cardiac remodelling (including fibrosis) in well-trained athletes. METHODS AND RESULTS: Forty athletes were studied at baseline, immediately following an endurance race (3-11 h duration) and 1-week post-race. Evaluation included cardiac troponin (cTnI), B-type natriuretic peptide, and echocardiography [including three-dimensional volumes, ejection fraction (EF), and systolic strain rate]. Delayed gadolinium enhancement (DGE) on cardiac magnetic resonance imaging (CMR) was assessed as a marker of myocardial fibrosis. Relative to baseline, RV volumes increased and all functional measures decreased post-race, whereas LV volumes reduced and function was preserved. B-type natriuretic peptide (13.1 ± 14.0 vs. 25.4 ± 21.4 ng/L, P = 0.003) and cTnI (0.01 ± .03 vs. 0.14 ± .17 μg/L, P < 0.0001) increased post-race and correlated with reductions in RVEF (r = 0.52, P = 0.001 and r = 0.49, P = 0.002, respectively), but not LVEF. Right ventricular ejection fraction decreased with increasing race duration (r = -0.501, P < 0.0001) and VO(2)max (r = -0.359, P = 0.011). Right ventricular function mostly recovered by 1 week. On CMR, DGE localized to the interventricular septum was identified in 5 of 39 athletes who had greater cumulative exercise exposure and lower RVEF (47.1 ± 5.9 vs. 51.1 ± 3.7%, P = 0.042) than those with normal CMR. CONCLUSION: Intense endurance exercise causes acute dysfunction of the RV, but not the LV. Although short-term recovery appears complete, chronic structural changes and reduced RV function are evident in some of the most practiced athletes, the long-term clinical significance of which warrants further study.
Chaudhuri O, Mooney DJ. Stem-cell differentiation: Anchoring cell-fate cues. Nat Mater. 2012;11 (7) :568-9.
Malhotra D, Fletcher AL, Astarita J, Lukacs-Kornek V, Tayalia P, Gonzalez SF, Elpek KG, Chang SK, Knoblich K, Hemler ME, et al. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat Immunol. 2012;13 (5) :499-510.Abstract
Lymph node stromal cells (LNSCs) closely regulate immunity and self-tolerance, yet key aspects of their biology remain poorly elucidated. Here, comparative transcriptomic analyses of mouse LNSC subsets demonstrated the expression of important immune mediators, growth factors and previously unknown structural components. Pairwise analyses of ligands and cognate receptors across hematopoietic and stromal subsets suggested a complex web of crosstalk. Fibroblastic reticular cells (FRCs) showed enrichment for higher expression of genes relevant to cytokine signaling, relative to their expression in skin and thymic fibroblasts. LNSCs from inflamed lymph nodes upregulated expression of genes encoding chemokines and molecules involved in the acute-phase response and the antigen-processing and antigen-presentation machinery. Poorly studied podoplanin (gp38)-negative CD31(-) LNSCs showed similarities to FRCs but lacked expression of interleukin 7 (IL-7) and were identified as myofibroblastic pericytes that expressed integrin α(7). Together our data comprehensively describe the transcriptional characteristics of LNSC subsets.
Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37 (1) :106-126.Abstract
Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers.
Mehta M, Schmidt-Bleek K, Duda GN, Mooney DJ. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv Drug Deliv Rev. 2012;64 (12) :1257-76.Abstract
Complications in treatment of large bone defects using bone grafting still remain. Our understanding of the endogenous bone regeneration cascade has inspired the exploration of a wide variety of growth factors (GFs) in an effort to mimic the natural signaling that controls bone healing. Biomaterial-based delivery of single exogenous GFs has shown therapeutic efficacy, and this likely relates to its ability to recruit and promote replication of cells involved in tissue development and the healing process. However, as the natural bone healing cascade involves the action of multiple factors, each acting in a specific spatiotemporal pattern, strategies aiming to mimic the critical aspects of this process will likely benefit from the usage of multiple therapeutic agents. This article reviews the current status of approaches to deliver single GFs, as well as ongoing efforts to develop sophisticated delivery platforms to deliver multiple lineage-directing morphogens (multiple GFs) during bone healing.
Sun J-Y, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z. Highly stretchable and tough hydrogels. Nature. 2012;489 (7414) :133-6.Abstract
Hydrogels are used as scaffolds for tissue engineering, vehicles for drug delivery, actuators for optics and fluidics, and model extracellular matrices for biological studies. The scope of hydrogel applications, however, is often severely limited by their mechanical behaviour. Most hydrogels do not exhibit high stretchability; for example, an alginate hydrogel ruptures when stretched to about 1.2 times its original length. Some synthetic elastic hydrogels have achieved stretches in the range 10-20, but these values are markedly reduced in samples containing notches. Most hydrogels are brittle, with fracture energies of about 10 J m(-2) (ref. 8), as compared with ∼1,000 J m(-2) for cartilage and ∼10,000 J m(-2) for natural rubbers. Intense efforts are devoted to synthesizing hydrogels with improved mechanical properties; certain synthetic gels have reached fracture energies of 100-1,000 J m(-2) (refs 11, 14, 17). Here we report the synthesis of hydrogels from polymers forming ionically and covalently crosslinked networks. Although such gels contain ∼90% water, they can be stretched beyond 20 times their initial length, and have fracture energies of ∼9,000 J m(-2). Even for samples containing notches, a stretch of 17 is demonstrated. We attribute the gels' toughness to the synergy of two mechanisms: crack bridging by the network of covalent crosslinks, and hysteresis by unzipping the network of ionic crosslinks. Furthermore, the network of covalent crosslinks preserves the memory of the initial state, so that much of the large deformation is removed on unloading. The unzipped ionic crosslinks cause internal damage, which heals by re-zipping. These gels may serve as model systems to explore mechanisms of deformation and energy dissipation, and expand the scope of hydrogel applications.
Bencherif SA, Sands WR, Bhatta D, Arany P, Verbeke CS, Edwards DA, Mooney DJ. Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci U S A. 2012;109 (48) :19590-5.Abstract
Injectable biomaterials are increasingly being explored to minimize risks and complications associated with surgical implantation. We describe a strategy for delivery via conventional needle-syringe injection of large preformed macroporous scaffolds with well-defined properties. Injectable 3D scaffolds, in the form of elastic sponge-like matrices, were prepared by environmentally friendly cryotropic gelation of a naturally sourced polymer. Cryogels with shape-memory properties may be molded to a variety of shapes and sizes, and may be optionally loaded with therapeutic agents or cells. These scaffolds have the capability to withstand reversible deformations at over 90% strain level, and a rapid volumetric recovery allows the structurally defined scaffolds to be injected through a small-bore needle with nearly complete geometric restoration once delivered. These gels demonstrated long-term release of biomolecules in vivo. Furthermore, cryogels impregnated with bioluminescent reporter cells provided enhanced survival, higher local retention, and extended engraftment of transplanted cells at the injection site compared with a standard injection technique. These injectable scaffolds show great promise for various biomedical applications, including cell therapies.
Khormaee S, Ali OA, Chodosh J, Mooney DJ. Optimizing siRNA efficacy through alteration in the target cell-adhesion substrate interaction. J Biomed Mater Res A. 2012;100 (10) :2637-43.Abstract
The clinical potential of short interfering RNA (siRNA) based therapeutics remains hindered by the challenge of delivering enough siRNA into the cytoplasm to yield a clinically relevant effect. Although much research has focused on optimizing delivery vehicles for this class of molecules, considerably less is known about the microenvironmental influences on the response of target cells to siRNA. The substrate to which cells adhere is one component of the microenvironment that can modulate cellular behavior. Here, we tested the hypothesis that modulating the properties of cellular adhesion substrates can alter siRNA efficacy. Specifically, cationic lipid complexed siRNA particles were applied to U251 cells seeded on alginate hydrogel surfaces with systematic variation in elastic modulus and integrin ligand arginine-glycine-aspartate (RGD) peptide density. These experiments revealed no change in siRNA-mediated eGFP knockdown over the elastic modulus range tested (53-133 kPa). However, an eightfold increase in RGD content of the alginate growth substrate resulted in an increase in siRNA knockdown efficacy from 25 ± 12% to 52 ± 10%, a more than twofold increase in silencing. Our results identify control of the cell-adhesion substrate interaction as a modulator of siRNA protein silencing efficacy.
Yuen WW, Du NR, Shvartsman D, Arany PR, Lam H, Mooney DJ. Statistical platform to discern spatial and temporal coordination of endothelial sprouting. Integr Biol (Camb). 2012;4 (3) :292-300.Abstract
Many biological processes, including angiogenesis, involve intercellular feedback and temporal coordination, but inference of these relations is often drowned in low sample sizes or noisy population data. To address this issue, a methodology was developed to statistically study spatial lateral inhibition and temporal synchronization in one specific biological process, endothelial sprouting mediated by Notch signaling. Notch plays an essential role in the development of organized vasculature, but the effects of Notch on the temporal characteristics of angiogenesis are not well understood. Results from this study showed that Notch lateral inhibition operates at distances less than 31 μm. Furthermore, combining time lapse microscopy with an intraclass correlation model typically used to analyze family data showed intrinsic temporal synchronization among endothelial sprouts originating from the same microcarrier. Such synchronization was reduced with Notch inhibitors, but was enhanced with the addition of Notch ligands. These results indicate that Notch plays a critical role in the temporal regulation of angiogenesis, as well as spatial control, and this method of analysis will be of significant utility in studies of a variety of other biological processes.
Kodiyan A, Silva EA, Kim J, Aizenberg M, Mooney DJ. Surface modification with alginate-derived polymers for stable, protein-repellent, long-circulating gold nanoparticles. ACS Nano. 2012;6 (6) :4796-805.Abstract
Poly(ethylene) glycol is commonly used to stabilize gold nanoparticles (GNPs). In this study, we evaluated the ability of cysteine-functionalized alginate-derived polymers to both provide colloidal stability to GNPs and avoid recognition and sequestration by the body's defense system. These polymers contain multiple reactive chemical groups (hydroxyl and carboxyl groups) that could allow for ready functionalization with, for example, cell-targeting ligands and therapeutic drugs. We report here that alginate-coupled GNPs demonstrate enhanced stability in comparison with bare citrate-coated GNPs and a similar lack of interaction with proteins in vitro and long in vivo circulation as PEG-coated GNPs.
2011
Zhao X, Kim J, Cezar CA, Huebsch N, Lee K, Bouhadir K, Mooney DJ. Active scaffolds for on-demand drug and cell delivery. Proc Natl Acad Sci U S A. 2011;108 (1) :67-72.Abstract
Porous biomaterials have been widely used as scaffolds in tissue engineering and cell-based therapies. The release of biological agents from conventional porous scaffolds is typically governed by molecular diffusion, material degradation, and cell migration, which do not allow for dynamic external regulation. We present a new active porous scaffold that can be remotely controlled by a magnetic field to deliver various biological agents on demand. The active porous scaffold, in the form of a macroporous ferrogel, gives a large deformation and volume change of over 70% under a moderate magnetic field. The deformation and volume variation allows a new mechanism to trigger and enhance the release of various drugs including mitoxantrone, plasmid DNA, and a chemokine from the scaffold. The porous scaffold can also act as a depot of various cells, whose release can be controlled by external magnetic fields.
Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, Guldberg RE. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials. 2011;32 (1) :65-74.Abstract
The treatment of challenging fractures and large osseous defects presents a formidable problem for orthopaedic surgeons. Tissue engineering/regenerative medicine approaches seek to solve this problem by delivering osteogenic signals within scaffolding biomaterials. In this study, we introduce a hybrid growth factor delivery system that consists of an electrospun nanofiber mesh tube for guiding bone regeneration combined with peptide-modified alginate hydrogel injected inside the tube for sustained growth factor release. We tested the ability of this system to deliver recombinant bone morphogenetic protein-2 (rhBMP-2) for the repair of critically-sized segmental bone defects in a rat model. Longitudinal μ-CT analysis and torsional testing provided quantitative assessment of bone regeneration. Our results indicate that the hybrid delivery system resulted in consistent bony bridging of the challenging bone defects. However, in the absence of rhBMP-2, the use of nanofiber mesh tube and alginate did not result in substantial bone formation. Perforations in the nanofiber mesh accelerated the rhBMP-2 mediated bone repair, and resulted in functional restoration of the regenerated bone. μ-CT based angiography indicated that perforations did not significantly affect the revascularization of defects, suggesting that some other interaction with the tissue surrounding the defect such as improved infiltration of osteoprogenitor cells contributed to the observed differences in repair. Overall, our results indicate that the hybrid alginate/nanofiber mesh system is a promising growth factor delivery strategy for the repair of challenging bone injuries.
Ali OA, Doherty E, Bell WJ, Fradet T, Hudak J, Laliberte M-T, Mooney DJ, Emerich DF. Biomaterial-based vaccine induces regression of established intracranial glioma in rats. Pharm Res. 2011;28 (5) :1074-80.Abstract
PURPOSE: The prognosis for glioma patients is poor, and development of new treatments is critical. Previously, we engineered polymer-based vaccines that control GM-CSF, CpG-oligonucleotide, and tumor-lysate presentation to regulate immune cell trafficking and activation, which promoted potent immune responses against peripheral tumors. Here, we extend the use of this system to glioma. METHODS: Rats were challenged with an intracranial injection of glioma cells followed (1 week) by administration of the polymeric vaccine (containing GM-CSF, CpG, and tumor-lysate) in the tumor bed. Control rats were treated with blank matrices, matrices with GM-CSF and CpG, or intra-tumoral bolus injections of GM-CSF, CpG, and tumor lysate. Rats were monitored for survival and tested for neurological function. RESULTS: Survival studies confirmed a benefit of the polymeric vaccine as 90% of vaccinated rats survived for > 100 days. Control rats exhibited minimal benefit. Motor tests revealed that vaccination protected against the loss of forelimb use produced by glioma growth. Histological analysis quantitatively confirmed a robust and rapid reduction in tumor size. Long-term immunity was confirmed when 67% of survivors also survived a second glioma challenge. CONCLUSIONS: These studies extend previous reports regarding this approach to tumor therapy and justify further development for glioma treatment.
Bencherif SA, Guillemot F, Huebsch N, Edwards DA, Mooney DJ. [Cell-traction mediated configuration of the cell/extracellular-matrix interface plays a key role in stem cell fate]. Med Sci (Paris). 2011;27 (1) :19-21.
La Gerche A, Heidbüchel H, Burns AT, Mooney DJ, Taylor AJ, Pfluger HB, Inder WJ, Macisaac AI, Prior DL. Disproportionate exercise load and remodeling of the athlete's right ventricle. Med Sci Sports Exerc. 2011;43 (6) :974-81.Abstract
PURPOSE: There is evolving evidence that intense exercise may place a disproportionate load on the right ventricle (RV) when compared with the left ventricle (LV) of the heart. Using a novel method of estimating end-systolic wall stress (ES-σ), we compared the RV and LV during exercise and assessed whether this influenced chronic ventricular remodeling in athletes. METHODS: For this study, 39 endurance athletes (EA) and 14 nonathletes (NA) underwent resting cardiac magnetic resonance (CMR), maximal oxygen uptake (VO2), and exercise echocardiography studies. LV and RV end-systolic wall stress (ES-σ) were calculated using the Laplace relation (ES-σ = Pr/(2h)). Ventricular size and wall thickness were determined by CMR; invasive and Doppler echo estimates were used to measure systemic and pulmonary ventricular pressures, respectively; and stroke volume was quantified by Doppler echocardiography and used to calculate changes in ventricular geometry during exercise. RESULTS: In EA, compared with NA, resting CMR measures showed greater RV than LV remodeling. The ratios RV ESV/LV ESV (1.40 ± 0.23 vs 1.26 ± 0.12, P = 0.007) and RV mass/LV mass (0.29 ± 0.04 vs 0.25 ± 0.03, P = 0.012) were greater in EA than in NA. RVES-σ was lower at rest than LVES-σ (143 ± 44 vs 252 ± 49 kdyn · cm, P < 0.001) but increased more with strenuous exercise (125% vs 14%, P < 0.001), resulting in similar peak exercise ES-σ (321 ± 106 vs 286 ± 77 kdyn · cm, P = 0.058). Peak exercise RVES-σ was greater in EA than in NA (340 ± 107 vs 266 ± 82 kdyn · cm, P = 0.028), whereas RVES-σ at matched absolute workloads did not differ (P = 0.79). CONCLUSIONS: Exercise induces a relative increase in RVES-σ which exceeds LVES-σ. In athletes, greater RV enlargement and greater wall thickening may be a product of this disproportionate load excess.
Ali OA, Doherty E, Bell WJ, Fradet T, Hudak J, Laliberte M-T, Mooney DJ, Emerich DF. The efficacy of intracranial PLG-based vaccines is dependent on direct implantation into brain tissue. J Control Release. 2011;154 (3) :249-57.Abstract
We previously engineered a macroporous, polymer-based vaccine that initially produces GM-CSF gradients to recruit local dendritic cells and subsequently presents CpG oligonucleotides, and tumor lysate to cell infiltrates to induce immune cell activation and immunity against tumor cells in peripheral tumor models. Here, we demonstrate that this system eradicates established intracranial glioma following implantation into brain tissue, whereas implantation in resection cavities obviates vaccine efficacy. Rats bearing seven-day old, intracranial glioma tumors were treated with PLG vaccines implanted into the tumor bed, resulting in retention of contralateral forelimb function (day 17) that is compromised by tumor formation in control animals, and 90% long-term survival (>100 days). Similar benefits were observed in animals receiving tumor resection plus vaccine implants into the adjacent parenchyma, but direct implantation of PLG vaccines into the resection cavity conferred no benefit. This dissociation of efficacy was likely related to GM-CSF distribution, as implantation of PLG vaccines within brain tissue produced significant GM-CSF gradients for prolonged periods, which was not detected after implantation in resection cavities. These studies demonstrate that PLG vaccine efficacy is correlated to GM-CSF gradient formation, which requires direct implantation into brain tissue, and justify further exploration of this approach for glioma treatment.

Pages