Liu Y, Adu-Berchie K, Brockman JM, Pezone M, Zhang DKY, Zhou J, Pyrdol JW, Wang H, Wucherpfennig KW, Mooney DJ. Cytokine conjugation to enhance T cell therapy. Proc Natl Acad Sci U S A. 2023;120 (1) :e2213222120.Abstract
Adoptive T cell transfer (ACT) therapies suffer from a number of limitations (e.g., poor control of solid tumors), and while combining ACT with cytokine therapy can enhance effectiveness, this also results in significant side effects. Here, we describe a nanotechnology approach to improve the efficacy of ACT therapies by metabolically labeling T cells with unnatural sugar nanoparticles, allowing direct conjugation of antitumor cytokines onto the T cell surface during the manufacturing process. This allows local, concentrated activity of otherwise toxic cytokines. This approach increases T cell infiltration into solid tumors, activates the host immune system toward a Type 1 response, encourages antigen spreading, and improves control of aggressive solid tumors and achieves complete blood cancer regression with otherwise noncurative doses of CAR-T cells. Overall, this method provides an effective and easily integrated approach to the current ACT manufacturing process to increase efficacy in various settings.
Elosegui-Artola A, Gupta A, Najibi AJ, Seo BR, Garry R, Tringides CM, de Lázaro I, Darnell M, Gu W, Zhou Q, et al. Matrix viscoelasticity controls spatiotemporal tissue organization. Nat Mater. 2023;22 (1) :117-127.Abstract
Biomolecular and physical cues of the extracellular matrix environment regulate collective cell dynamics and tissue patterning. Nonetheless, how the viscoelastic properties of the matrix regulate collective cell spatial and temporal organization is not fully understood. Here we show that the passive viscoelastic properties of the matrix encapsulating a spheroidal tissue of breast epithelial cells guide tissue proliferation in space and in time. Matrix viscoelasticity prompts symmetry breaking of the spheroid, leading to the formation of invading finger-like protrusions, YAP nuclear translocation and epithelial-to-mesenchymal transition both in vitro and in vivo in a Arp2/3-complex-dependent manner. Computational modelling of these observations allows us to establish a phase diagram relating morphological stability with matrix viscoelasticity, tissue viscosity, cell motility and cell division rate, which is experimentally validated by biochemical assays and in vitro experiments with an intestinal organoid. Altogether, this work highlights the role of stress relaxation mechanisms in tissue growth dynamics, a fundamental process in morphogenesis and oncogenesis.
Nam S, Seo BR, Najibi AJ, McNamara SL, Mooney DJ. Active tissue adhesive activates mechanosensors and prevents muscle atrophy. Nat Mater. 2022.Abstract
While mechanical stimulation is known to regulate a wide range of biological processes at the cellular and tissue levels, its medical use for tissue regeneration and rehabilitation has been limited by the availability of suitable devices. Here we present a mechanically active gel-elastomer-nitinol tissue adhesive (MAGENTA) that generates and delivers muscle-contraction-mimicking stimulation to a target tissue with programmed strength and frequency. MAGENTA consists of a shape memory alloy spring that enables actuation up to 40% strain, and an adhesive that efficiently transmits the actuation to the underlying tissue. MAGENTA activates mechanosensing pathways involving yes-associated protein and myocardin-related transcription factor A, and increases the rate of muscle protein synthesis. Disuse muscles treated with MAGENTA exhibit greater size and weight, and generate higher forces compared to untreated muscles, demonstrating the prevention of atrophy. MAGENTA thus has promising applications in the treatment of muscle atrophy and regenerative medicine.
Freedman BR, Mooney DJ, Weber E. Advances toward transformative therapies for tendon diseases. Sci Transl Med. 2022;14 (661) :eabl8814.Abstract
Approved therapies for tendon diseases have not yet changed the clinical practice of symptomatic pain treatment and physiotherapy. This review article summarizes advances in the development of novel drugs, biologic products, and biomaterial therapies for tendon diseases with perspectives for translation of integrated therapies. Shifting from targeting symptom relief toward disease modification and prevention of disease progression may open new avenues for therapies. Deep evidence-based clinical, cellular, and molecular characterization of the underlying pathology of tendon diseases, as well as therapeutic delivery optimization and establishment of multidiscipline interorganizational collaboration platforms, may accelerate the discovery and translation of transformative therapies for tendon diseases.
Najibi AJ, Larkin K, Feng Z, Jeffreys N, Dacus MT, Rustagi Y, Hodi SF, Mooney DJ. Chemotherapy Dose Shapes the Expression of Immune-Interacting Markers on Cancer Cells. Cell Mol Bioeng. 2022;15 (6) :535-551.Abstract
INTRODUCTION: Tumor and immune cells interact through a variety of cell-surface proteins that can either restrain or promote tumor progression. The impacts of cytotoxic chemotherapy dose and delivery route on this interaction profile remain incompletely understood, and could support the development of more effective combination therapies for cancer treatment. METHODS AND RESULTS: Here, we found that exposure to the anthracycline doxorubicin altered the expression of numerous immune-interacting markers (MHC-I, PD-L1, PD-L2, CD47, Fas, and calreticulin) on live melanoma, breast cancer, and leukemia cells in a dose-dependent manner in vitro. Notably, an intermediate dose best induced immunogenic cell death and the expression of immune-activating markers without maximizing expression of markers associated with immune suppression. Bone marrow-derived dendritic cells exposed to ovalbumin-expressing melanoma treated with intermediate doxorubicin dose became activated and best presented tumor antigen. In a murine melanoma model, both the doxorubicin dose and delivery location (systemic infusion versus local administration) affected the expression of these markers on live tumor cells. Particularly, local release of doxorubicin from a hydrogel increased calreticulin expression on tumor cells without inducing immune-suppressive markers, in a manner dependent on the loaded dose. Doxorubicin exposure also altered the expression of immune-interacting markers in patient-derived melanoma cells. CONCLUSIONS: Together, these results illustrate how standard-of-care chemotherapy, when administered in various manners, can lead to distinct expression of immunogenic markers on cancer cells. These findings may inform development of chemo-immunotherapy combinations for cancer treatment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12195-022-00742-y.
Scott EA, Mooney DJ. A combination microparticle strategy for achieving antigen-specific tolerance. Proc Natl Acad Sci U S A. 2022;119 (52) :e2216976119.
Koh E, Freedman BR, Ramazani F, Gross J, Graham A, Kuttler A, Weber E, Mooney DJ. Controlled Delivery of Corticosteroids Using Tunable Tough Adhesives. Adv Healthc Mater. 2022 :e2201000.Abstract
Hydrogel-based drug delivery systems typically aim to release drugs locally to tissue in an extended manner. Tissue adhesive alginate-polyacrylamide tough hydrogels are recently demonstrated to serve as an extended-release system for the corticosteroid triamcinolone acetonide. Here, the stimuli-responsive controlled release of triamcinolone acetonide from the alginate-polyacrylamide tough hydrogel drug delivery systems (TADDS) and evolving new approaches to combine alginate-polyacrylamide tough hydrogel with drug-loaded nano and microparticles, generating composite TADDS is described. Stimulation with ultrasound pulses or temperature changes is demonstrated to control the release of triamcinolone acetonide from the TADDS. The incorporation of laponite nanoparticles or PLGA microparticles into the tough hydrogel is shown to further enhance the versatility to control and modulate the release of triamcinolone acetonide. A first technical exploration of a TADDS shelf-life concept is performed using lyophilization, where lyophilized TADDS are physically stable and the bioactive integrity of released triamcinolone acetonide is demonstrated. Given the tunability of properties, the TADDS are a suggested technology platform for controlled drug delivery.
Özkale B, Lou J, Özelçi E, Elosegui-Artola A, Tringides CM, Mao AS, Sakar MS, Mooney DJ. Correction: Actuated 3D microgels for single cell mechanobiology. Lab Chip. 2022;22 (18) :3565-3566.Abstract
Correction for 'Actuated 3D microgels for single cell mechanobiology' by Berna Özkale et al., Lab Chip, 2022, 22, 1962-1970,
Friesen M, Khalil AS, Barrasa IM, Jeppesen JF, Mooney DJ, Jaenisch R. Development of a physiological insulin resistance model in human stem cell-derived adipocytes. Sci Adv. 2022;8 (24) :eabn7298.Abstract
Adipocytes are key regulators of human metabolism, and their dysfunction in insulin signaling is central to metabolic diseases including type II diabetes mellitus (T2D). However, the progression of insulin resistance into T2D is still poorly understood. This limited understanding is due, in part, to the dearth of suitable models of insulin signaling in human adipocytes. Traditionally, adipocyte models fail to recapitulate in vivo insulin signaling, possibly due to exposure to supraphysiological nutrient and hormone conditions. We developed a protocol for human pluripotent stem cell-derived adipocytes that uses physiological nutrient conditions to produce a potent insulin response comparable to in vivo adipocytes. After systematic optimization, this protocol allows robust insulin-stimulated glucose uptake and transcriptional insulin response. Furthermore, exposure of sensitized adipocytes to physiological hyperinsulinemia dampens insulin-stimulated glucose uptake and dysregulates insulin-responsive transcription. Overall, our methodology provides a novel platform for the mechanistic study of insulin signaling and resistance using human pluripotent stem cell-derived adipocytes.
Cintron-Cruz JA, Freedman BR, Lee M, Johnson C, Ijaz H, Mooney DJ. Rapid Ultratough Topological Tissue Adhesives. Adv Mater. 2022;34 (35) :e2205567.Abstract
Tissue adhesives capable of achieving strong and tough adhesion in permeable wet environments are useful in many biomedical applications. However, adhesion generated through covalent bond formation directly with the functional groups of tissues (i.e., COOH and NH2  groups in collagen), or using non-covalent interactions can both be limited by weak, unstable, or slow adhesion. Here, it is shown that by combining pH-responsive bridging chitosan polymer chains and a tough hydrogel dissipative matrix one can achieve unprecedented ultratough adhesion to tissues (>2000 J m-2 ) in 5-10 min without covalent bond formation. The strong non-covalent adhesion is shown to be stable under physiologically relevant conditions and strongly influenced by chitosan molecular weight, molecular weight of polymers in the matrix, and pH. The adhesion mechanism relies primarily on the topological entanglement between the chitosan chains and the permeable adherends. To further expand the applicability of the adhesives, adhesion time can be decreased by dehydrating the hydrogel matrix to facilitate rapid chitosan interpenetration and entanglement (>1000 J m-2  in ≤1 min). The unprecedented adhesive properties presented in this study open opportunities for new strategies in the development of non-covalent tissue adhesives and numerous bioapplications.
Najibi AJ, Shih T-Y, Zhang DKY, Lou J, Sobral MC, Wang H, Dellacherie MO, Adu-Berchie K, Mooney DJ. Targeting tumor extracellular matrix activates the tumor-draining lymph nodes. Cancer Immunol Immunother. 2022;71 (12) :2957-2968.Abstract
Disruption of the tumor extracellular matrix (ECM) may alter immune cell infiltration into the tumor and antitumor T cell priming in the tumor-draining lymph nodes (tdLNs). Here, we explore how intratumoral enzyme treatment (ET) of B16 melanoma tumors with ECM-depleting enzyme hyaluronidase alters adaptive and innate immune populations, including T cells, DCs, and macrophages, in the tumors and tdLNs. ET increased CD103+ DC abundance in the tdLNs, as well as antigen presentation of a model tumor antigen ovalbumin (OVA), eliciting local OVA-specific CD8+ T cell responses. Delivered in combination with a distant cryogel-based cancer vaccine, ET increased the systemic antigen-specific CD8+ T cell response. By enhancing activity within the tdLN, ET may broadly support immunotherapies in generating tumor-specific immunity.
Tringides CM, Boulingre M, Khalil A, Lungjangwa T, Jaenisch R, Mooney DJ. Tunable Conductive Hydrogel Scaffolds for Neural Cell Differentiation. Adv Healthc Mater. 2022 :e2202221.Abstract
Multielectrode arrays would benefit from intimate engagement with neural cells, but typical arrays do not present a physical environment that mimics that of neural tissues. It is hypothesized that a porous, conductive hydrogel scaffold with appropriate mechanical and conductive properties could support neural cells in 3D, while tunable electrical and mechanical properties could modulate the growth and differentiation of the cellular networks. By incorporating carbon nanomaterials into an alginate hydrogel matrix, and then freeze-drying the formulations, scaffolds which mimic neural tissue properties are formed. Neural progenitor cells (NPCs) incorporated in the scaffolds form neurite networks which span the material in 3D and differentiate into astrocytes and myelinating oligodendrocytes. Viscoelastic and more conductive scaffolds produce more dense neurite networks, with an increased percentage of astrocytes and higher myelination. Application of exogenous electrical stimulation to the scaffolds increases the percentage of astrocytes and the supporting cells localize differently with the surrounding neurons. The tunable biomaterial scaffolds can support neural cocultures for over 12 weeks, and enable a physiologically mimicking in vitro platform to study the formation of neuronal networks. As these materials have sufficient electrical properties to be used as electrodes in implantable arrays, they may allow for the creation of biohybrid neural interfaces and living electrodes.
Irvine DJ, Maus MV, Mooney DJ, Wong WW. The future of engineered immune cell therapies. Science. 2022;378 (6622) :853-858.Abstract
Immune cells are being engineered to recognize and respond to disease states, acting as a "living drug" when transferred into patients. Therapies based on engineered immune cells are now a clinical reality, with multiple engineered T cell therapies approved for treatment of hematologic malignancies. Ongoing preclinical and clinical studies are testing diverse strategies to modify the fate and function of immune cells for applications in cancer, infectious disease, and beyond. Here, we discuss current progress in treating human disease with immune cell therapeutics, emerging strategies for immune cell engineering, and challenges facing the field, with a particular emphasis on the treatment of cancer, where the most effort has been applied to date.
Vining KH, Marneth AE, Adu-Berchie K, Grolman JM, Tringides CM, Liu Y, Wong WJ, Pozdnyakova O, Severgnini M, Stafford A, et al. Mechanical checkpoint regulates monocyte differentiation in fibrotic niches. Nat Mater. 2022;21 (8) :939-950.Abstract
Myelofibrosis is a progressive bone marrow malignancy associated with monocytosis, and is believed to promote the pathological remodelling of the extracellular matrix. Here we show that the mechanical properties of myelofibrosis, namely the liquid-to-solid properties (viscoelasticity) of the bone marrow, contribute to aberrant differentiation of monocytes. Human monocytes cultured in stiff, elastic hydrogels show proinflammatory polarization and differentiation towards dendritic cells, as opposed to those cultured in a viscoelastic matrix. This mechanically induced cell differentiation is blocked by inhibiting a myeloid-specific isoform of phosphoinositide 3-kinase, PI3K-γ. We further show that murine bone marrow with myelofibrosis has a significantly increased stiffness and unveil a positive correlation between myelofibrosis grading and viscoelasticity. Treatment with a PI3K-γ inhibitor in vivo reduced frequencies of monocyte and dendritic cell populations in murine bone marrow with myelofibrosis. Moreover, transcriptional changes driven by viscoelasticity are consistent with transcriptional profiles of myeloid cells in other human fibrotic diseases. These results demonstrate that a fibrotic bone marrow niche can physically promote a proinflammatory microenvironment.
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev. 2022.Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Berger G, Knelson EH, Jimenez-Macias JL, Nowicki MO, Han S, Panagioti E, Lizotte PH, Adu-Berchie K, Stafford A, Dimitrakakis N, et al. STING activation promotes robust immune response and NK cell-mediated tumor regression in glioblastoma models. Proc Natl Acad Sci U S A. 2022;119 (28) :e2111003119.Abstract
Immunotherapy has had a tremendous impact on cancer treatment in the past decade, with hitherto unseen responses at advanced and metastatic stages of the disease. However, the aggressive brain tumor glioblastoma (GBM) is highly immunosuppressive and remains largely refractory to current immunotherapeutic approaches. The stimulator of interferon genes (STING) DNA sensing pathway has emerged as a next-generation immunotherapy target with potent local immune stimulatory properties. Here, we investigated the status of the STING pathway in GBM and the modulation of the brain tumor microenvironment (TME) with the STING agonist ADU-S100. Our data reveal the presence of STING in human GBM specimens, where it stains strongly in the tumor vasculature. We show that human GBM explants can respond to STING agonist treatment by secretion of inflammatory cytokines. In murine GBM models, we show a profound shift in the tumor immune landscape after STING agonist treatment, with massive infiltration of the tumor-bearing hemisphere with innate immune cells including inflammatory macrophages, neutrophils, and natural killer (NK) populations. Treatment of established murine intracranial GL261 and CT-2A tumors by biodegradable ADU-S100-loaded intracranial implants demonstrated a significant increase in survival in both models and long-term survival with immune memory in GL261. Responses to treatment were abolished by NK cell depletion. This study reveals therapeutic potential and deep remodeling of the TME by STING activation in GBM and warrants further examination of STING agonists alone or in combination with other immunotherapies such as cancer vaccines, chimeric antigen receptor T cells, NK therapies, and immune checkpoint blockade.
Badrinath S, Dellacherie MO, Li A, Zheng S, Zhang X, Sobral M, Pyrdol JW, Smith KL, Lu Y, Haag S, et al. A vaccine targeting resistant tumours by dual T cell plus NK cell attack. Nature. 2022;606 (7916) :992-998.Abstract
Most cancer vaccines target peptide antigens, necessitating personalization owing to the vast inter-individual diversity in major histocompatibility complex (MHC) molecules that present peptides to T cells. Furthermore, tumours frequently escape T cell-mediated immunity through mechanisms that interfere with peptide presentation1. Here we report a cancer vaccine that induces a coordinated attack by diverse T cell and natural killer (NK) cell populations. The vaccine targets the MICA and MICB (MICA/B) stress proteins expressed by many human cancers as a result of DNA damage2. MICA/B serve as ligands for the activating NKG2D receptor on T cells and NK cells, but tumours evade immune recognition by proteolytic MICA/B cleavage3,4. Vaccine-induced antibodies increase the density of MICA/B proteins on the surface of tumour cells by inhibiting proteolytic shedding, enhance presentation of tumour antigens by dendritic cells to T cells and augment the cytotoxic function of NK cells. Notably, this vaccine maintains efficacy against MHC class I-deficient tumours resistant to cytotoxic T cells through the coordinated action of NK cells and CD4+ T cells. The vaccine is also efficacious in a clinically important setting: immunization following surgical removal of primary, highly metastatic tumours inhibits the later outgrowth of metastases. This vaccine design enables protective immunity even against tumours with common escape mutations.
Tringides CM, Mooney DJ. Materials for Implantable Surface Electrode Arrays: Current Status and Future Directions. Adv Mater. 2022;34 (20) :e2107207.Abstract
Surface electrode arrays are mainly fabricated from rigid or elastic materials, and precisely manipulated ductile metal films, which offer limited stretchability. However, the living tissues to which they are applied are nonlinear viscoelastic materials, which can undergo significant mechanical deformation in dynamic biological environments. Further, the same arrays and compositions are often repurposed for vastly different tissues rather than optimizing the materials and mechanical properties of the implant for the target application. By first characterizing the desired biological environment, and then designing a technology for a particular organ, surface electrode arrays may be more conformable, and offer better interfaces to tissues while causing less damage. Here, the various materials used in each component of a surface electrode array are first reviewed, and then electrically active implants in three specific biological systems, the nervous system, the muscular system, and skin, are described. Finally, the fabrication of next-generation surface arrays that overcome current limitations is discussed.
Koh E, Ambatipudi M, Boone DLL, Luehr JBW, Blaise A, Gonzalez J, Sule N, Mooney DJ, He EM. Quantifying face mask comfort. J Occup Environ Hyg. 2022;19 (1) :23-34.Abstract
Face mask usage is one of the most effective ways to limit SARS-CoV-2 transmission, but a mask is only useful if user compliance is high. Through anonymous surveys (n = 679), it was shown that mask discomfort is the primary source of noncompliance in mask wearing. Further, through these surveys, three critical predicting variables that dictate mask comfort were identified: air resistance, water vapor permeability, and face temperature change. To validate these predicting variables in a physiological context, experiments (n = 9) were performed to measure the respiratory rate and change in face temperature while wearing different types of three commonly used masks. Finally, using values of these predicting variables from experiments and the literature, and surveys asking users to rate the comfort of various masks, three machine learning algorithms were trained and tested to generate overall comfort scores for those masks. Although all three models performed with an accuracy of approximately 70%, the multiple linear regression model provides a simple analytical expression to predict the comfort scores for common face masks provided the input predicting variables. As face mask usage is crucial during the COVID-19 pandemic, the goal of this quantitative framework to predict mask comfort is hoped to improve user experience and prevent discomfort-induced noncompliance.
Özkale B, Lou J, Özelçi E, Elosegui-Artola A, Tringides CM, Mao AS, Sakar MS, Mooney DJ. Actuated 3D microgels for single cell mechanobiology. Lab Chip. 2022;22 (10) :1962-1970.Abstract
We present a new cell culture technology for large-scale mechanobiology studies capable of generating and applying optically controlled uniform compression on single cells in 3D. Mesenchymal stem cells (MSCs) are individually encapsulated inside an optically triggered nanoactuator-alginate hybrid biomaterial using microfluidics, and the encapsulating network isotropically compresses the cell upon activation by light. The favorable biomolecular properties of alginate allow cell culture in vitro up to a week. The mechanically active microgels are capable of generating up to 15% compressive strain and forces reaching 400 nN. As a proof of concept, we demonstrate the use of the mechanically active cell culture system in mechanobiology by subjecting singly encapsulated MSCs to optically generated isotropic compression and monitoring changes in intracellular calcium intensity.