Özkale B, Sakar MS, Mooney DJ. Active biomaterials for mechanobiology. Biomaterials. 2021;267 :120497.Abstract
Active biomaterials offer novel approaches to study mechanotransduction in mammalian cells. These material systems probe cellular responses by dynamically modulating their resistance to endogenous forces or applying exogenous forces on cells in a temporally controlled manner. Stimuli-responsive molecules, polymers, and nanoparticles embedded inside cytocompatible biopolymer networks transduce external signals such as light, heat, chemicals, and magnetic fields into changes in matrix elasticity (few kPa to tens of kPa) or forces (few pN to several μN) at the cell-material interface. The implementation of active biomaterials in mechanobiology has generated scientific knowledge and therapeutic potential relevant to a variety of conditions including but not limited to cancer metastasis, fibrosis, and tissue regeneration. We discuss the repertoire of cellular responses that can be studied using these platforms including receptor signaling as well as downstream events namely, cytoskeletal organization, nuclear shuttling of mechanosensitive transcriptional regulators, cell migration, and differentiation. We highlight recent advances in active biomaterials and comment on their future impact.
Lazow SP, Labuz DF, Freedman BR, Rock A, Zurakowski D, Mooney DJ, Fauza DO. A novel two-component, expandable bioadhesive for exposed defect coverage: Applicability to prenatal procedures. J Pediatr Surg. 2021;56 (1) :165-169.Abstract
BACKGROUND/PURPOSE: We sought to test select properties of a novel, expandable bioadhesive composite that allows for enhanced adhesion control in liquid environments. METHODS: Rabbit fetuses (n = 23) underwent surgical creation of spina bifida on gestational day 22-25 (term 32-33 days). Defects were immediately covered with a two-component tough adhesive consisting of a hydrogel made of a double network of ionically crosslinked alginate and covalently crosslinked polyacrylamide linked to a bridging chitosan polymer adhesive. Animals were euthanized prior to term for different analyses, including hydraulic pressure testing. RESULTS: Hydrogels remained adherent in 70% (16/23) of the recovered fetuses and in all of the last 14 fetuses as the procedure was optimized. Adherent hydrogels showed a median two-fold (IQR: 1.7-2.4) increase in area at euthanasia, with defect coverage confirmed by ultrasound and histology. The median maximum pressure to repair failure was 15 mmHg (IQR: 7.8-55.3), exceeding reported neonatal cerebrospinal fluid pressures. CONCLUSIONS: This novel bioadhesive composite allows for selective, stable attachment of an alginate-polyacrylamide hydrogel to specific areas of the spina bifida defect in a fetal rabbit model, while the hydrogel expands with the defect over time. It could become a valuable alternative for the prenatal repair of spina bifida and possibly other congenital anomalies. TYPE OF STUDY: N/A (animal and laboratory study). LEVEL OF EVIDENCE: N/A (animal and laboratory study).
Gonzalez-Pujana A, de Lázaro I, Vining KH, Santos-Vizcaino E, Igartua M, Hernandez RM, Mooney DJ. 3D encapsulation and inflammatory licensing of mesenchymal stromal cells alter the expression of common reference genes used in real-time RT-qPCR. Biomater Sci. 2020;8 (23) :6741-6753.Abstract
Human mesenchymal stromal cells (hMSCs) hold great promise in the treatment of inflammatory and immune diseases, due to their immunomodulatory capacity. Their therapeutic activity is often assessed measuring levels of expression of immunomodulatory genes such as indoleamine 2,3-dioxygenase 1 (IDO1) and real-time RT-qPCR is most predominantly the method of choice due to its high sensitivity and relative simplicity. Currently, multiple strategies are explored to promote hMSC-mediated immunomodulation, overlooking the effects they pose in the expression of genes commonly used as internal calibrators in real-time RT-qPCR analyses. However, variations in their expression could introduce significant errors in the evaluation of the therapeutic potential of hMSCs. This work investigates, for the first time, how some of these strategies - 3D encapsulation, the mechanical properties of the 3D matrix and inflammatory licensing - influence the expression of common reference genes in hMSCs. Both 3D encapsulation and inflammatory licensing alter significantly the expression of β-actin (ACTB) and Ubiquitin C (UBC), respectively. Using them as normalization factors leads to an erroneous assessment of IDO1 mRNA levels, therefore resulting in over or underestimation of the therapeutic potential of hMSCs. In contrast, the range of mechanical properties of the matrix encapsulating the cells did not significantly affect the expression of any of the reference genes studied. Moreover, we identify RPS13 and RPL30 as reference genes of choice under these particular experimental conditions. These results demonstrate the vital importance of validating the expression of reference genes to correctly assess the therapeutic potential of hMSCs by real-time RT-qPCR.
Wang H, Najibi AJ, Sobral MC, Seo BR, Lee JY, Wu D, Li AW, Verbeke CS, Mooney DJ. Biomaterial-based scaffold for in situ chemo-immunotherapy to treat poorly immunogenic tumors. Nat Commun. 2020;11 (1) :5696.Abstract
Poorly immunogenic tumors, including triple negative breast cancers (TNBCs), remain resistant to current immunotherapies, due in part to the difficulty of reprogramming the highly immunosuppressive tumor microenvironment (TME). Here we show that peritumorally injected, macroporous alginate gels loaded with granulocyte-macrophage colony-stimulating factor (GM-CSF) for concentrating dendritic cells (DCs), CpG oligonucleotides, and a doxorubicin-iRGD conjugate enhance the immunogenic death of tumor cells, increase systemic tumor-specific CD8 + T cells, repolarize tumor-associated macrophages towards an inflammatory M1-like phenotype, and significantly improve antitumor efficacy against poorly immunogenic TNBCs. This system also prevents tumor recurrence after surgical resection and results in 100% metastasis-free survival upon re-challenge. This chemo-immunotherapy that concentrates DCs to present endogenous tumor antigens generated in situ may broadly serve as a facile platform to modulate the suppressive TME, and enable in situ personalized cancer vaccination.
Adu-Berchie K, Mooney DJ. Biomaterials as Local Niches for Immunomodulation. Acc Chem Res. 2020;53 (9) :1749-1760.Abstract
A major function of the immune system is to detect threat from foreign invaders, tissue damage, or cancer and to mount a counter response that resolves the threat, restores homeostasis, and supplies immunological memory to prevent a second assault. Our increasing understanding of the immune system has opened up numerous avenues for modulating immune responses against infections, cancer, and autoimmunity. However, agents used for immunomodulation have been traditionally administered systemically via bolus injection, leading to unintended consequences by disrupting homeostasis at nontarget sites. Consequently, systemic hyperactivation and hypoactivation can result from bolus administration of immune-activators and immunosuppressants, respectively. Macroscale biomaterial scaffolds can instead be placed at the intended target site to provide both localized, controlled release of immunomodulatory agents and control over local immune cell trafficking and function, potentially maximizing therapeutic efficacy and limiting systemic exposure. These scaffolds have found utility in the area of cancer immunotherapy, especially cancer vaccination where controlled release of factors such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and the local presentation of tumor antigen and danger signals lead to the recruitment of immature dendritic cells and facilitate their activation and antigen presentation. These cells eventually migrate into secondary lymphoid organs where they prime tumor specific T cells for downstream tumor clearance. Scaffolds can also be used in adoptive T cell therapy to generate large numbers of potent antigen specific T cells or chimeric antigen receptor (CAR) T cells in vitro for subsequent delivery to patients. Macroscale biomaterial scaffolds have also found utility beyond cancer immunotherapy and have been developed to promote immune tolerance by regulatory T cell induction and to expedite tissue regeneration. The design of these macroscale biomaterial scaffolds considers their biocompatibility, biodegradability, mode of delivery, porosity, and kinetics of therapeutic cargo release. Consequently, the numerous approaches that have been developed to fabricate biomaterial scaffolds are aimed at tuning these parameters to achieve the desired therapeutic outcome. This Account will discuss the use of biomaterial scaffolds as niches for immunomodulation and will focus on (1) approaches that have been used to fabricate various biomaterial systems being employed as niches for immunomodulation and (2) how these biomaterial systems have been used to modulate immune responses, specifically in area of cancer immunotherapy, where we will discuss the role of macroscale biomaterial scaffolds for vaccination and in vitro T cell expansion. We will also briefly discuss the utility of biomaterial scaffolds beyond cancer, drawing examples from tolerance and tissue regeneration.
Brennan MÁ, Layrolle P, Mooney DJ. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration. Adv Funct Mater. 2020;30 (37).Abstract
The therapeutic benefits of mesenchymal stromal cell (MSC) transplantation have been attributed to their secreted factors, including extracellular vesicles (EVs) and soluble factors. The potential of employing the MSC secretome as an alternative acellular approach to cell therapy is being investigated in various tissue injury indications, but EVs administered via bolus injections are rapidly sequestered and cleared. However, biomaterials offer delivery platforms to enhance EV retention rates and healing efficacy. In this review, we highlight the mechanisms underpinning the therapeutic effects of MSC-EVs and soluble factors as effectors of immunomodulation and tissue regeneration, conferred primarily via their nucleic acid and protein contents. We discuss how manipulating the cell culture microenvironment or genetic modification of MSCs can further augment the potency of their secretions. The most recent advances in the development of EV-functionalized biomaterials that mediate enhanced angiogenesis and cell survival, while attenuating inflammation and fibrosis, are presented. Finally, some technical challenges to be considered for the clinical translation of biomaterials carrying MSC-secreted bioactive cargo are discussed.
Najibi AJ, Mooney DJ. Cell and tissue engineering in lymph nodes for cancer immunotherapy. Adv Drug Deliv Rev. 2020;161-162 :42-62.Abstract
In cancer, lymph nodes (LNs) coordinate tumor antigen presentation necessary for effective antitumor immunity, both at the levels of local cellular interactions and tissue-level organization. In this review, we examine how LNs may be engineered to improve the therapeutic outcomes of cancer immunotherapy. At the cellular scale, targeting the LNs impacts the potency of cancer vaccines, immune checkpoint blockade, and adoptive cell transfer. On a tissue level, macro-scale biomaterials mimicking LN features can function as immune niches for cell reprogramming or delivery in vivo, or be utilized in vitro to enable preclinical testing of drugs and vaccines. We additionally review strategies to induce ectopic lymphoid sites reminiscent of LNs that may improve antitumor T cell priming.
Lueckgen A, Garske DS, Ellinghaus A, Mooney DJ, Duda GN, Cipitria A. Dual alginate crosslinking for local patterning of biophysical and biochemical properties. Acta Biomater. 2020;115 :185-196.Abstract
Hydrogels with patterned biophysical and biochemical properties have found increasing attention in the biomaterials community. In this work, we explore alginate-based materials with two orthogonal crosslinking mechanisms: the spontaneous Diels-Alder reaction and the ultraviolet light-initiated thiol-ene reaction. Combining these mechanisms in one material and spatially restricting the location of the latter using photomasks, enables the formation of dual-crosslinked hydrogels with patterns in stiffness, biomolecule presentation and degradation, granting local control over cell behavior. Patterns in stiffness are characterized morphologically by confocal microscopy and mechanically by uniaxial compression and microindentation measurement. Mouse embryonic fibroblasts seeded on stiffness-patterned substrates attach preferably and attain a spread morphology on stiff compared to soft regions. Human mesenchymal stem cells demonstrate preferential adipogenic differentiation on soft surfaces and osteogenic differentiation on stiff surfaces. Patterns in biomolecule presentation reveal favored attachment of mouse pre-osteoblasts on stripe regions, where thiolated cell-adhesive biomolecules have been coupled. Patterns in degradation are visualized by microindentation measurement following collagenase exposure. Patterned tissue infiltration into degradable regions on the surface is discernible in n=5/12 samples, when these materials are implanted subcutaneously into the backs of mice. Taken together, these results demonstrate that our hydrogel system with patterns in biophysical and biochemical properties enables the study of how environmental cues affect multiple cell behaviors in vitro and could be applied to guide endogenous tissue growth in diverse healing scenarios in vivo. STATEMENT OF SIGNIFICANCE: Hydrogels with patterns in biophysical and biochemical properties have been explored in the biomaterials community in order to spatially control or guide cell behavior. In our alginate-based system, we demonstrate the effect of local substrate stiffness and biomolecule presentation on the in vitro cell attachment, morphology, migration and differentiation behavior of two different mouse cell lines and human primary cells. Additionally, the effect of degradation patterns on the in vivo tissue infiltration is analyzed following subcutaneous implantation into a mouse model. The achievement of patterned tissue infiltration following the hydrogel template represents an important step towards guiding endogenous healing responses, thus inviting application in various tissue engineering contexts.
Chaudhuri O, Cooper-White J, Janmey PA, Mooney DJ, Shenoy VB. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature. 2020;584 (7822) :535-546.Abstract
Substantial research over the past two decades has established that extracellular matrix (ECM) elasticity, or stiffness, affects fundamental cellular processes, including spreading, growth, proliferation, migration, differentiation and organoid formation. Linearly elastic polyacrylamide hydrogels and polydimethylsiloxane (PDMS) elastomers coated with ECM proteins are widely used to assess the role of stiffness, and results from such experiments are often assumed to reproduce the effect of the mechanical environment experienced by cells in vivo. However, tissues and ECMs are not linearly elastic materials-they exhibit far more complex mechanical behaviours, including viscoelasticity (a time-dependent response to loading or deformation), as well as mechanical plasticity and nonlinear elasticity. Here we review the complex mechanical behaviours of tissues and ECMs, discuss the effect of ECM viscoelasticity on cells, and describe the potential use of viscoelastic biomaterials in regenerative medicine. Recent work has revealed that matrix viscoelasticity regulates these same fundamental cell processes, and can promote behaviours that are not observed with elastic hydrogels in both two- and three-dimensional culture microenvironments. These findings have provided insights into cell-matrix interactions and how these interactions differentially modulate mechano-sensitive molecular pathways in cells. Moreover, these results suggest design guidelines for the next generation of biomaterials, with the goal of matching tissue and ECM mechanics for in vitro tissue models and applications in regenerative medicine.
Khalil AS, Jaenisch R, Mooney DJ. Engineered tissues and strategies to overcome challenges in drug development. Adv Drug Deliv Rev. 2020;158 :116-139.Abstract
Current preclinical studies in drug development utilize high-throughput in vitro screens to identify drug leads, followed by both in vitro and in vivo models to predict lead candidates' pharmacokinetic and pharmacodynamic properties. The goal of these studies is to reduce the number of lead drug candidates down to the most likely to succeed in later human clinical trials. However, only 1 in 10 drug candidates that emerge from preclinical studies will succeed and become an approved therapeutic. Lack of efficacy or undetected toxicity represents roughly 75% of the causes for these failures, despite these parameters being the primary exclusion criteria in preclinical studies. Recently, advances in both biology and engineering have created new tools for constructing new preclinical models. These models can complement those used in current preclinical studies by helping to create more realistic representations of human tissues in vitro and in vivo. In this review, we describe current preclinical models to identify their value and limitations and then discuss select areas of research where improvements in preclinical models are particularly needed to advance drug development. Following this, we discuss design considerations for constructing preclinical models and then highlight recent advances in these efforts. Taken together, we aim to review the advances as of 2020 surrounding the prospect of biological and engineering tools for adding enhanced biological relevance to preclinical studies to aid in the challenges of failed drug candidates and the burden this poses on the drug development enterprise and thus healthcare.
Grolman JM, Weinand P, Mooney DJ. Extracellular matrix plasticity as a driver of cell spreading. Proc Natl Acad Sci U S A. 2020;117 (42) :25999-26007.Abstract
Mammalian cell morphology has been linked to the viscoelastic properties of the adhesion substrate, which is particularly relevant in biological processes such as wound repair and embryonic development where cell spreading and migration are critical. Plastic deformation, degradation, and relaxation of stress are typically coupled in biomaterial systems used to explore these effects, making it unclear which variable drives cell behavior. Here we present a nondegradable polymer architecture that specifically decouples irreversible creep from stress relaxation and modulus. We demonstrate that network plasticity independently controls mesenchymal stem cell spreading through a biphasic relationship dependent on cell-intrinsic forces, and this relationship can be shifted by inhibiting actomyosin contractility. Kinetic Monte Carlo simulations also show strong correlation with experimental cell spreading data as a function of the extracellular matrix (ECM) plasticity. Furthermore, plasticity regulates many ECM adhesion and remodeling genes. Altogether, these findings confirm a key role for matrix plasticity in stem cell biophysics, and we anticipate this will have ramifications in the design of biomaterials to enhance therapeutic applications of stem cells.
Wang H, Mooney DJ. Metabolic glycan labelling for cancer-targeted therapy. Nat Chem. 2020;12 (12) :1102-1114.Abstract
Metabolic glycoengineering with unnatural sugars provides a powerful tool to label cell membranes with chemical tags for subsequent targeted conjugation of molecular cargos via efficient chemistries. This technology has been widely explored for cancer labelling and targeting. However, as this metabolic labelling process can occur in both cancerous and normal cells, cancer-selective labelling needs to be achieved to develop cancer-targeted therapies. Unnatural sugars can be either rationally designed to enable preferential labelling of cancer cells, or specifically delivered to cancerous tissues. In this Review Article, we will discuss the progress to date in design and delivery of unnatural sugars for metabolic labelling of tumour cells and subsequent development of tumour-targeted therapy. Metabolic cell labelling for cancer immunotherapy will also be discussed. Finally, we will provide a perspective on future directions of metabolic labelling of cancer and immune cells for the development of potent, clinically translatable cancer therapies.
Gonzalez-Pujana A, Vining KH, Zhang DKY, Santos-Vizcaino E, Igartua M, Hernandez RM, Mooney DJ. Multifunctional biomimetic hydrogel systems to boost the immunomodulatory potential of mesenchymal stromal cells. Biomaterials. 2020;257 :120266.Abstract
Mesenchymal stromal cells (MSCs) hold great therapeutic potential, in part because of their immunomodulatory properties. However, these properties can be transient and depend on multiple factors. Here, we developed a multifunctional hydrogel system to synergistically enhance the immunomodulatory properties of MSCs, using a combination of sustained inflammatory licensing and three-dimensional (3D) encapsulation in hydrogels with tunable mechanical properties. The immunomodulatory extracellular matrix hydrogels (iECM) consist of an interpenetrating network of click functionalized-alginate and fibrillar collagen, in which interferon γ (IFN-γ) loaded heparin-coated beads are incorporated. The 3D microenvironment significantly enhanced the expression of a wide panel of pivotal immunomodulatory genes in bone marrow-derived primary human MSCs (hMSCs), compared to two-dimensional (2D) tissue culture. Moreover, the inclusion of IFN-γ loaded heparin-coated beads prolonged the expression of key regulatory genes upregulated upon licensing, including indoleamine 2,3-dioxygenase 1 (IDO1) and galectin-9 (GAL9). At a protein level, iECM hydrogels enhanced the secretion of the licensing responsive factor Gal-9 by hMSCs. Its presence in hydrogel conditioned media confirmed the correct release and diffusion of the factors secreted by hMSCs from the system. Furthermore, co-culture of iECM-encapsulated hMSCs and activated human T cells resulted in suppressed proliferation, demonstrating direct regulation on immune cells. These data highlight the potential of iECM hydrogels to enhance the immunomodulatory properties of hMSCs in cell therapies.
McNamara SL, Brudno Y, Miller AB, Ham HO, Aizenberg M, Chaikof EL, Mooney DJ. Regenerating Antithrombotic Surfaces through Nucleic Acid Displacement. ACS Biomater Sci Eng. 2020;6 (4) :2159-2166.Abstract
Blood-contacting devices are commonly coated with antithrombotic agents to prevent clot formation and to extend the lifespan of the device. However, in vivo degradation of these bioactive surface agents ultimately limits device efficacy and longevity. Here, a regenerative antithrombotic catheter surface treatment is developed using oligodeoxynucleotide (ODN) toehold exchange. ODN strands modified to carry antithrombotic payloads can inhibit the thrombin enzyme when bound to a surface and exchange with rapid kinetics over multiple cycles, even while carrying large payloads. The surface-bound ODNs inhibit thrombin activity to significantly reduce fibrinogen cleavage and fibrin formation, and this effect is sustained after ODN exchange of the surface-bound strands with a fresh antithrombotic payload. This study presents a unique strategy for achieving a continuous antithrombotic state for blood-contacting devices using an ODN-based regeneration method.
Sands WR, Tabansky I, Verbeke CS, Keskin D, Michel S, Stern J, Mooney DJ. Steroid-Peptide Immunoconjugates for Attenuating T Cell Responses in an Experimental Autoimmune Encephalomyelitis Murine Model of Multiple Sclerosis. Bioconjug Chem. 2020;31 (12) :2779-2788.Abstract
Diseases of immunity, including autoimmune diseases such as multiple sclerosis, transplantation graft rejection, allergy, and asthma, are prevalent and increasing in prevalence. They contribute to significant morbidity and mortality; however, few if any curative therapies exist, and those that are available lack either potency or specificity. Dendritic cells (DCs) are sentinels of the immune system that connect the innate and adaptive immune system and are critical regulators of both immunity and tolerance. We posited that the tolerogenic potential of DC could be harnessed to develop more specific and potent therapies for diseases of immunity by delivering autoantigen to a sufficient number of tolerogenic DCs in situ that could then inhibit pathogenic effector T cell responses. Specifically, we hypothesized that the steroid dexamethasone covalently coupled to a peptide antigen could be processed by DCs, induce tolerogenic DCs, and attenuate antigen-specific pathogenic T cell responses. To test this hypothesis, we synthesized a series of dexamethasone-peptide immunoconjugates by standard solid-phase peptide synthesis. The antigenic portion of the immunoconjugate could be presented by DCs, and the immunoconjugate induced a tolerogenic phenotype in DCs that then inhibited antigen-specific T cell proliferation in vitro. When the immunoconjugate was administered prophylactically in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis, disease was attenuated compared to dexamethasone and peptide delivered as uncoupled components. Together, this work demonstrates the utility of immunoconjugates for inducing tolerance while establishing the foundation for future studies exploring methods to enrich and target DCs for tolerogenic therapies.
Ledo AM, Vining KH, Alonso MJ, Garcia-Fuentes M, Mooney DJ. Extracellular matrix mechanics regulate transfection and SOX9-directed differentiation of mesenchymal stem cells. Acta Biomater. 2020;110 :153-163.Abstract
Gene delivery within hydrogel matrices can potentially direct mesenchymal stem cells (MSCs) towards a chondrogenic fate to promote regeneration of cartilage. Here, we investigated whether the mechanical properties of the hydrogel containing the gene delivery systems could enhance transfection and chondrogenic programming of primary human bone marrow-derived MSCs. We developed collagen-I-alginate interpenetrating polymer network hydrogels with tunable stiffness and adhesion properties. The hydrogels were activated with nanocomplexed SOX9 polynucleotides to direct chondrogenic differentiation of MSCs. MSCs transfected within the hydrogels showed higher expression of chondrogenic markers compared to MSCs transfected in 2D prior to encapsulation. The nanocomplex uptake and resulting expression of transfected SOX9 were jointly enhanced by increased stiffness and cell-adhesion ligand density in the hydrogels. Further, transfection of SOX9 effectively induced MSCs chondrogenesis and reduced markers of hypertrophy compared to control matrices. These findings highlight the importance of matrix stiffness and adhesion as design parameters in gene-activated matrices for regenerative medicine. STATEMENT OF SIGNIFICANCE: Gene-activated matrices (GAMs) are biodegradable polymer networks integrating gene therapies, and they are promising technologies for supporting tissue regeneration. Despite this interest, there is still limited information on how to rationally design these systems. Here, we provide a systematic study of the effect of matrix stiffness and cell adhesion ligands on gene transfer efficiency. We show that high stiffness and the presence of cell-binding sites promote transfection efficiency and that this result is related to more efficient internalization and trafficking of the gene therapies. GAMs with optimized mechanical properties can induce cartilage formation and result in tissues with better characteristics for articular cartilage tissue engineering as compared to previously described standard methods.
Wang H, Sobral MC, Zhang DKY, Cartwright AN, Li AW, Dellacherie MO, Tringides CM, Koshy ST, Wucherpfennig KW, Mooney DJ. Metabolic labeling and targeted modulation of dendritic cells. Nat Mater. 2020;19 (11) :1244-1252.Abstract
Targeted immunomodulation of dendritic cells (DCs) in vivo will enable manipulation of T-cell priming and amplification of anticancer immune responses, but a general strategy has been lacking. Here we show that DCs concentrated by a biomaterial can be metabolically labelled with azido groups in situ, which allows for their subsequent tracking and targeted modulation over time. Azido-labelled DCs were detected in lymph nodes for weeks, and could covalently capture dibenzocyclooctyne (DBCO)-bearing antigens and adjuvants via efficient Click chemistry for improved antigen-specific CD8 T-cell responses and antitumour efficacy. We also show that azido labelling of DCs allowed for in vitro and in vivo conjugation of DBCO-modified cytokines, including DBCO-IL-15/IL-15Rα, to improve priming of antigen-specific CD8 T cells. This DC labelling and targeted modulation technology provides an unprecedented strategy for manipulating DCs and regulating DC-T-cell interactions in vivo.
Zhang DKY, Cheung AS, Mooney DJ. Activation and expansion of human T cells using artificial antigen-presenting cell scaffolds. Nat Protoc. 2020;15 (3) :773-798.Abstract
Synthetic antigen-presenting cells (APCs) are used to mediate scalable ex vivo T-cell expansion for adoptive cell therapy. Recently, we developed APC-mimetic scaffolds (APC-ms), which present signals to T cells in a physiological manner to mediate rapid and controlled T-cell expansion. APC-ms are composed of individual high-aspect-ratio silica microrods loaded with soluble mitogenic cues and coated with liposomes of defined compositions, to form supported lipid bilayers. Membrane-bound ligands for stimulation and co-stimulation of T-cell receptors are presented via the fluid, synthetic membranes, while mitogenic cues are released slowly from the microrods. In culture, interacting T cells assemble the individual APC-ms microrods into a biodegradable 3D matrix. Compared to conventional methods, APC-ms facilitates several-fold greater polyclonal T-cell expansion and improved antigen-specific enrichment of rare T-cell subpopulations. Here we provide a detailed protocol for APC-ms synthesis and use for human T-cell activation, and discuss important considerations for material design and T-cell co-culture. This protocol describes the facile assembly of APC-ms in ~4 h and rapid expansion or enrichment of relevant T-cell clones in <2 weeks, and is applicable for T-cell manufacturing and assay development.
Garske DS, Schmidt-Bleek K, Ellinghaus A, Dienelt A, Gu L, Mooney DJ, Duda GN, Cipitria A. Alginate Hydrogels for Bone Regeneration: The Immune Competence of the Animal Model Matters. Tissue Eng Part A. 2020;26 (15-16) :852-862.Abstract
Biomaterials with tunable biophysical properties hold great potential for tissue engineering. The adaptive immune system plays an important role in bone regeneration. Our goal is to investigate the regeneration potential of cell-laden alginate hydrogels depending on the immune status of the animal model. Specifically, the regeneration potential of rat mesenchymal stromal cell (MSC)-laden, void-forming alginate hydrogels, with a stiffness optimized for osteogenic differentiation, is studied in 5-mm critical-sized femoral defects, in both T cell-deficient athymic Rowett Nude (RNU) rats and immunocompetent Sprague Dawley rats. Bone volume fraction, bone mineral density, and tissue mineral density are higher for athymic RNU nude rats 6 weeks postsurgery. In addition, these animals show a significantly higher number of total cells and cells with non-lymphocyte morphology at the defect site, while the number of cells with lymphocyte-like morphology is lower. Hydrogel degradation is slower and the remaining alginate fragments are surrounded by a thicker fibrous capsule. Ossification islands originating from alginate residues suggest that encapsulated MSCs differentiate into the osteogenic lineage and initiate the mineralization process. However, this effect is insufficient to fully bridge the bone defect in both animal models. Alginate hydrogels can be used to deliver MSCs and thereby recruit endogenous cells through paracrine signaling, but additional osteogenic stimuli are needed to regenerate critical-sized segmental femoral defects.
Shah NJ, Najibi AJ, Shih T-Y, Mao AS, Sharda A, Scadden DT, Mooney DJ. A biomaterial-based vaccine eliciting durable tumour-specific responses against acute myeloid leukaemia. Nat Biomed Eng. 2020;4 (1) :40-51.Abstract
Acute myeloid leukaemia (AML) is a malignancy of haematopoietic origin that has limited therapeutic options. The standard-of-care cytoreductive chemotherapy depletes AML cells to induce remission, but is infrequently curative. An immunosuppressive AML microenvironment in the bone marrow and the paucity of suitable immunotherapy targets limit the induction of effective immune responses. Here, in mouse models of AML, we show that a macroporous-biomaterial vaccine that delivers the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF), the Toll-like-receptor-9 agonist cytosine-guanosine oligodeoxynucleotide and one or multiple leukaemia antigens (in the form of a defined peptide antigen, cell lysates or antigens sourced from AML cells recruited in vivo) induces local immune-cell infiltration and activated dendritic cells, evoking a potent anti-AML response. The biomaterial-based vaccine prevented the engraftment of AML cells when administered as a prophylactic and when combined with chemotherapy, and eradicated established AML even in the absence of a defined vaccine antigen. Biomaterial-based AML vaccination can induce potent immune responses, deplete AML cells and prevent disease relapse.