Viscoelastic Biomaterials for Tissue Regeneration

Citation:

Wu DT, Jeffreys N, Diba M, Mooney DJ. Viscoelastic Biomaterials for Tissue Regeneration. Tissue Eng Part C Methods. 2022;28 (7) :289-300.

Date Published:

2022 Jul

Abstract:

The extracellular matrix (ECM) mechanical properties regulate key cellular processes in tissue development and regeneration. The majority of scientific investigation has focused on ECM elasticity as the primary mechanical regulator of cell and tissue behavior. However, all living tissues are viscoelastic, exhibiting both solid- and liquid-like mechanical behavior. Despite increasing evidence regarding the role of ECM viscoelasticity in directing cellular behavior, this aspect is still largely overlooked in the design of biomaterials for tissue regeneration. Recently, with the emergence of various bottom-up material design strategies, new approaches can deliver unprecedented control over biomaterial properties at multiple length scales, thus enabling the design of viscoelastic biomaterials that mimic various aspects of the native tissue ECM microenvironment. This review describes key considerations for the design of viscoelastic biomaterials for tissue regeneration. We provide an overview of the role of matrix viscoelasticity in directing cell behavior toward regenerative outcomes, highlight recent strategies utilizing viscoelastic hydrogels for regenerative therapies, and outline remaining challenges, potential solutions, and emerging applications for viscoelastic biomaterials in tissue engineering and regenerative medicine. Impact statement All living tissues are viscoelastic. As we design viscoelastic biomaterials for tissue engineering and regenerative medicine, we must understand the effect of matrix viscoelasticity on in vitro cell behavior and in vivo regenerative outcomes. Engineering the next generation of biomaterials with tunable viscoelasticity to direct cell and tissue behavior will contribute to the development of in vitro tissue models and in vivo regenerative therapies to address unmet clinical needs.
Last updated on 01/12/2023