Quantification of human angiogenesis in immunodeficient mice using a photon counting-based method

Citation:

Dong Z, Neiva KG, Jin T, Zhang Z, Hall DE, Mooney DJ, Polverini PJ, Nör JE. Quantification of human angiogenesis in immunodeficient mice using a photon counting-based method. Biotechniques. 2007;43 (1) :73-7.

Date Published:

2007 Jul

Abstract:

Testing new antiangiogenic drugs for cancer treatment requires the use of animal models, since stromal cells and extracellular matrices mediate signals to endothelial cells that cannot be fully reproduced in vitro. Most methods used for analysis of antiangiogenic drugs in vivo utilized histologic examination of tissue specimens, which often requires large sample sizes to obtain reliable quantitative data. Furthermore, these assays rely on the analysis of murine vasculature that may not be correlated with the responses of human endothelial cells. Here, we engineered human blood vessels in immunodeficient mice with human endothelial cells expressing luciferase, demonstrated that these cells line functional blood vessels, and quantified angiogenesis over time using a photon counting-based method. In a proof-of-principle experiment with PTK/ZK, a small molecule inhibitor of vascular endothelial growth factor (VEGF) tyrosine kinase receptors, a strong correlation was observed between the decrease in bioluminescence (9.12-fold) in treated mice and the actual decrease in microvessel density (9.16-fold) measured after retrieval of the scaffolds and immunohistochemical staining of endothelial cells. The method described here allows for quantitative and noninvasive investigation into the effects of anti-cancer drugs on human angiogenesis in a murine host.
Last updated on 09/29/2017