A novel two-component, expandable bioadhesive for exposed defect coverage: Applicability to prenatal procedures

Citation:

Lazow SP, Labuz DF, Freedman BR, Rock A, Zurakowski D, Mooney DJ, Fauza DO. A novel two-component, expandable bioadhesive for exposed defect coverage: Applicability to prenatal procedures. J Pediatr Surg. 2021;56 (1) :165-169.

Date Published:

2021 Jan

Abstract:

BACKGROUND/PURPOSE: We sought to test select properties of a novel, expandable bioadhesive composite that allows for enhanced adhesion control in liquid environments. METHODS: Rabbit fetuses (n = 23) underwent surgical creation of spina bifida on gestational day 22-25 (term 32-33 days). Defects were immediately covered with a two-component tough adhesive consisting of a hydrogel made of a double network of ionically crosslinked alginate and covalently crosslinked polyacrylamide linked to a bridging chitosan polymer adhesive. Animals were euthanized prior to term for different analyses, including hydraulic pressure testing. RESULTS: Hydrogels remained adherent in 70% (16/23) of the recovered fetuses and in all of the last 14 fetuses as the procedure was optimized. Adherent hydrogels showed a median two-fold (IQR: 1.7-2.4) increase in area at euthanasia, with defect coverage confirmed by ultrasound and histology. The median maximum pressure to repair failure was 15 mmHg (IQR: 7.8-55.3), exceeding reported neonatal cerebrospinal fluid pressures. CONCLUSIONS: This novel bioadhesive composite allows for selective, stable attachment of an alginate-polyacrylamide hydrogel to specific areas of the spina bifida defect in a fetal rabbit model, while the hydrogel expands with the defect over time. It could become a valuable alternative for the prenatal repair of spina bifida and possibly other congenital anomalies. TYPE OF STUDY: N/A (animal and laboratory study). LEVEL OF EVIDENCE: N/A (animal and laboratory study).
Last updated on 10/15/2021