High-resolution elasticity imaging for tissue engineering

Citation:

Abraham Cohn N, Kim BS, Erkamp RQ, Mooney DJ, Emelianov SY, Skovoroda AR, O'Donnell M. High-resolution elasticity imaging for tissue engineering. IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47 (4) :956-66.

Date Published:

2000

Abstract:

An elasticity microscope provides high resolution images of tissue elasticity. With this instrument, it may be possible to monitor cell growth and tissue development in tissue engineering. To test this hypothesis, elasticity micrographs were obtained in two model systems commonly used for tissue engineering. In the first, strain images of a tissue-engineered smooth muscle sample clearly identified a several hundred micron thick cell layer from its supporting matrix. Because a one-dimensional mechanical model was appropriate for this system, strain images alone were sufficient to image the elastic properties. In contrast, a second system was investigated in which a simple one-dimensional mechanical model was inadequate. Uncultured collagen microspheres embedded in an otherwise homogeneous gel were imaged with the elasticity microscope. Strain images alone did not clearly depict the elastic properties of the hard spherical cell carriers. However, reconstructed elasticity images could differentiate the hard inclusion from the background gel. These results strongly suggest that the elasticity microscope may be a valuable tool for tissue engineering and other applications requiring the elastic properties of soft tissue at high spatial resolution (75 microm or less).
Last updated on 09/29/2017