Fabrication and in vitro testing of polymeric delivery system for condensed DNA

Citation:

Huang Y-C, Connell M, Park Y, Mooney DJ, Rice KG. Fabrication and in vitro testing of polymeric delivery system for condensed DNA. J Biomed Mater Res A. 2003;67 (4) :1384-92.

Date Published:

2003 Dec 15

Abstract:

Polyethylenimine (PEI) was combined with plasmid DNA and freeze dried following the addition of sucrose as a lyoprotectant and pore-forming agent. Freeze-dried PEI DNA condensates were dry mixed with granular polylactideglycolic acid (PLGA) then compression molded and sponged to encapsulated PEI DNA. A measurement of the elastic modulus indicated that 91 wt% sucrose substituted for 95 wt% sodium chloride as a porogen, resulting in PLGA sponges with a mechanical modulus of 100 kPa. The PEI DNA was retained (80%) within PLGA sponges prepared with sucrose during the leaching and subsequent 2-week release studies, whereas sodium chloride PLGA sponges caused the premature release (100%) of PEI DNA within 2 days. In vitro gene transfer studies with PEI DNA PLGA sponges established that adherent and infiltrating fibroblasts expressed reporter gene for 15 days compared with the short, 3-day expression mediated by direct gene of PEI DNA on cells in culture. The results demonstrate an approach to encapsulate condensed DNA in a PLGA sponge for the purpose of retaining DNA within the matrices and creating efficient gene transfer during tissue engineering.
Last updated on 09/29/2017