Comparative study of seeding methods for three-dimensional polymeric scaffolds


Burg KJ, Holder WD, Culberson CR, Beiler RJ, Greene KG, Loebsack AB, Roland WD, Eiselt P, Mooney DJ, Halberstadt CR. Comparative study of seeding methods for three-dimensional polymeric scaffolds. J Biomed Mater Res. 2000;51 (4) :642-9.

Date Published:

2000 Sep 15


Development of tissue-engineered devices may be enhanced by combining cells with porous absorbable polymeric scaffolds before implantation. The cells are seeded throughout the scaffolds and allowed to proliferate in vitro for a predetermined amount of time. The distribution of cells throughout the porous material is one critical component determining success or failure of the tissue-engineered device. This can influence both the successful integration of the device with the host tissue as well as the development of a vascularized network throughout the entire scaffold volume. This research sought to compare different seeding and proliferation methods to select an ideal method for a polyglycolide/aortic endothelial cell system. Two seeding environments, static and dynamic, and three proliferation environments, static, dynamic, and bioreactor, were analyzed, for a total of six possible methods. The six seeding and proliferation combinations were analyzed following a 1-week total culture time. It was determined that for this specific system, dynamic seeding followed by a dynamic proliferation phase is the least promising method and dynamic seeding followed by a bioreactor proliferation phase is the most promising.