Cellular ingrowth and thickness changes in poly-L-lactide and polyglycolide matrices implanted subcutaneously in the rat

Citation:

Holder WD, Gruber HE, Moore AL, Culberson CR, Anderson W, Burg KJ, Mooney DJ. Cellular ingrowth and thickness changes in poly-L-lactide and polyglycolide matrices implanted subcutaneously in the rat. J Biomed Mater Res. 1998;41 (3) :412-21.

Date Published:

1998 Sep 05

Abstract:

Highly porous matrices of poly-L-lactide (PL) and polyglycolide (PG), 24, 50, or 95 mg/cc in the form of 10 x 10 x 3 mm wafers, were implanted subcutaneously (two per rat) in the flanks of 8-12-week-old female Lewis rats (n = 120). Matrices were harvested, two rats per week, for 15 weeks and examined histologically. At weeks 1 and 2, a thin fibrous capsule was present and matrices showed capillary beds and host-cell infiltration along the implant margins. By week 4, the PL specimens had some arterioles while the PG specimens still had only capillary beds. At week 7, PL had well developed arterioles, venules, and capillaries while PG began to show modest vascular beds of capillaries only. In terms of cellular ingrowth, PL remained unchanged from 7 to 15 weeks. Giant cell formation was observed wherever polymer was present. There was a loss of thickness and cell mass for both matrices over time (PG > PL) despite initial host-cell ingrowth. As both polymers degraded and were absorbed, the ingrown cells mass regressed. There was little remaining PG at 15 weeks, leaving no trace of cells that previously had ingrown and no evidence of scar tissue.