Lee KY, Alsberg E, Mooney DJ. Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering. J Biomed Mater Res. 2001;56 (2) :228-33.Abstract
Degradable and injectable hydrogels may be ideal for bone-tissue engineering, especially in the craniofacial region because of the ease of access for injection. Alginate hydrogels potentially could be used as injectable cell delivery vehicles, but they exhibit a limited range of mechanical properties and uncontrollable disintegration time. Therefore we synthesized new hydrogels, composed of poly(aldehyde guluronate) (PAG) and adipic acid dihydrazide, that have a wide range of mechanical stiffness and controllable degradation rate. MC3T3-E1 cells adhered and multiplied on PAG hydrogels in vitro. When primary rat calvarial osteoblasts were mixed with PAG hydrogels and subcutaneously injected into the backs of mice, mineralized bone tissues were formed 9 weeks following implantation. These hydrogels may find wide utility as an injectable delivery system for bone precursor cells as well as for other applications in tissue engineering.
Bouhadir KH, Lee KY, Alsberg E, Damm KL, Anderson KW, Mooney DJ. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol Prog. 2001;17 (5) :945-50.Abstract
Alginate has been widely used in a variety of biomedical applications including drug delivery and cell transplantation. However, alginate itself has a very slow degradation rate, and its gels degrade in an uncontrollable manner, releasing high molecular weight strands that may have difficulty being cleared from the body. We hypothesized that the periodate oxidation of alginate, which cleaves the carbon-carbon bond of the cis-diol group in the uronate residue and alters the chain conformation, would result in promoting the hydrolysis of alginate in aqueous solutions. Alginate, oxidized to a low extent (approximately 5%), degraded with a rate depending on the pH and temperature of the solution. This polymer was still capable of being ionically cross-linked with calcium ions to form gels, which degraded within 9 days in PBS solution. Finally, the use of these degradable alginate-derived hydrogels greatly improved cartilage-like tissue formation in vivo, as compared to alginate hydrogels.
Nör JE, Peters MC, Christensen JB, Sutorik MM, Linn S, Khan MK, Addison CL, Mooney DJ, Polverini PJ. Engineering and characterization of functional human microvessels in immunodeficient mice. Lab Invest. 2001;81 (4) :453-63.Abstract
SUMMARY: Current model systems used to investigate angiogenesis in vivo rely on the interpretation of results obtained with nonhuman endothelial cells. Recent advances in tissue engineering and molecular biology suggest the possibility of engineering human microvessels in vivo. Here we show that human dermal microvascular endothelial cells (HDMEC) transplanted into severe combined immunodeficient (SCID) mice on biodegradable polymer matrices differentiate into functional human microvessels that anastomose with the mouse vasculature. HDMEC were stably transduced with Flag epitope or alkaline phosphatase to confirm the human origin of the microvessels. Endothelial cells appeared dispersed throughout the sponge 1 day after transplantation, became organized into empty tubular structures by Day 5, and differentiated into functional microvessels within 7 to 10 days. Human microvessels in SCID mice expressed the physiological markers of angiogenesis: CD31, CD34, vascular cellular adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1). Human endothelial cells became invested by perivascular smooth muscle alpha-actin-expressing mouse cells 21 days after implantation. This model was used previously to demonstrate that overexpression of the antiapoptotic protein Bcl-2 in HDMEC enhances neovascularization, and that apoptotic disruption of tumor microvessels is associated with apoptosis of surrounding tumor cells. The proposed SCID mouse model of human angiogenesis is ideally suited for the study of the physiology of microvessel development, pathologic neovascular responses such as tumor angiogenesis, and for the development and investigation of strategies designed to enhance the neovascularization of engineered human tissues and organs.
Bouhadir KH, Alsberg E, Mooney DJ. Hydrogels for combination delivery of antineoplastic agents. Biomaterials. 2001;22 (19) :2625-33.Abstract
The systemic delivery of anticancer agents has been widely investigated during the past decade but localized delivery may offer a safer and more effective delivery approach. We have designed and synthesized a novel hydrogel to locally deliver antineoplastic agents, and demonstrate the different types of release that can be achieved from these hydrogels using three model drugs: methotrexate, doxorubicin, and mitoxantrone. Alginate was chemically modified into low molecular weight oligomers and cross-linked with a biodegradable spacer (adipic dihydrazide) to form biodegradable hydrogels. The model antineoplastic agents were loaded into the hydrogel via three different mechanisms. Methotrexate was incorporated within the pores of the hydrogel and was released by diffusion into the surrounding medium. Doxorubicin was covalently attached to the polymer backbone via a hydrolytically labile linker and was released following the chemical hydrolysis of the linker. Mitoxantrone was ionically complexed to the polymer and was released after the dissociation of this complex. These three release mechanisms could potentially be used to deliver a wide selection of antineoplastic agents, based on their chemical structure. This novel delivery system allows for the release of single or combinations of antineoplastic agents, and may find utility in localized antineoplastic agent delivery.
Nör JE, Christensen J, Liu J, Peters M, Mooney DJ, Strieter RM, Polverini PJ. Up-Regulation of Bcl-2 in microvascular endothelial cells enhances intratumoral angiogenesis and accelerates tumor growth. Cancer Res. 2001;61 (5) :2183-8.Abstract
Vascular endothelial growth factor (VEGF) has been shown to be a potent mediator of angiogenesis that functions as a survival factor for endothelial cells by up-regulating Bcl-2 expression. We have recently reported that human dermal microvascular endothelial cells (HDMECs) seeded in biodegradable sponges and implanted into severe combined immunodeficient (SCID) mice organize into functional human microvessels that transport mouse blood cells. In this study, we implanted sponges seeded with OSCC-3 (oral squamous cell carcinoma) or SLK (Kaposi's sarcoma) together with endothelial cells into SCID mice to generate human tumors vascularized with human microvessels. This model system was used to examine the role of both endothelial cell Bcl-2 and the proangiogenic chemokine interleukin-8 (IL-8) on tumor growth and intratumoral microvascular density. Coimplantation of HDMECs overexpressing Bcl-2 (HDMEC-Bcl-2) and tumor cells resulted in a 3-fold enhancement of tumor growth when compared with the coimplantation of control HDMECs and tumor cells. This was associated with increased intratumoral microvascular density and enhanced endothelial cell survival. To determine whether the enhanced neovascularization mediated by Bcl-2 overexpression in endothelial cells was influenced by the synthesis of endogenous mediators of angiogenesis, we screened these cells for expression of VEGF, basic fibroblast growth factor (bFGF), and IL-8 by ELISA. HDMEC-Bcl-2 cells and VEGF-treated HDMECs exhibited a 15-fold and 4-fold increase, respectively, in the expression of the proangiogenic chemokine IL-8 in vitro, whereas the expression of VEGF and bFGF remained unchanged. Transfection of antisense Bcl-2 into HDMECs blocked VEGF-mediated induction of IL-8. Conditioned media from HDMEC-Bcl-2 induced proliferation and sprouting of endothelial cells in vitro and neovascularization in rat corneas. Anti-IL-8 antibody added to HDMEC-Bcl-2 conditioned media markedly reduced the potency of these responses. SCID mice bearing VEGF-producing tumor implants that were treated with anti-lL-8 antibody exhibited a 43% reduction in microvessel density and a 50% reduction in tumor weight compared with treatment with a nonspecific antibody. These results demonstrate that the up-regulation of Bcl-2 expression in endothelial cells that constitute tumor microvessels enhances intratumoral microvascular survival and density and accelerates tumor growth. Furthermore, endothelial cells that overexpress Bcl-2 have more angiogenic potential than control cells, and IL-8-neutralizing antibodies attenuate their angiogenic activity in vitro and in vivo.
Alsberg E, Anderson KW, Albeiruti A, Franceschi RT, Mooney DJ. Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res. 2001;80 (11) :2025-9.Abstract
There is significant interest in the development of injectable carriers for cell transplantation to engineer bony tissues. In this study, we hypothesized that adhesion ligands covalently coupled to hydrogel carriers would allow one to control pre-osteoblast cell attachment, proliferation, and differentiation. Modification of alginate with an RGD-containing peptide promoted osteoblast adhesion and spreading, whereas minimal cell adhesion was observed on unmodified hydrogels. Raising the adhesion ligand density increased osteoblast proliferation, and a minimum ligand density (1.5-15 femtomoles/cm2) was needed to elicit this effect. MC3T3-E1 cells demonstrated increased osteoblast differentiation with the peptide-modified hydrogels, as confirmed by the up-regulation of bone-specific differentiation markers. Further, transplantation of primary rat calvarial osteoblasts revealed statistically significant increases of in vivo bone formation at 16 and 24 weeks with G4RGDY-modified alginate compared with unmodified alginate. These findings demonstrate that biomaterials may be designed to control bone development from transplanted cells.
Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101 (7) :1869-79.
Richardson TP, Murphy WL, Mooney DJ. Polymeric delivery of proteins and plasmid DNA for tissue engineering and gene therapy. Crit Rev Eukaryot Gene Expr. 2001;11 (1-3) :47-58.Abstract
In vivo gene expression can be altered by locally delivered DNA and proteins. The ability to deliver bioactive macromolecules, such as proteins and plasmid DNA, over controllable time frames represents a challenging engineering problem. Considerable success has been achieved with polymeric delivery systems that provide the capability to change cell function either acutely or chronically. This review focuses on controlled delivery of proteins and plasmid DNA from polymers and on the effects of controlled delivery on gene expression, and introduces some cell biological and biochemical parameters to be considered when delivering macromolecules to change cell behavior.
Richardson TP, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual growth factor delivery. Nat Biotechnol. 2001;19 (11) :1029-34.Abstract
The development of tissues and organs is typically driven by the action of a number of growth factors. However, efforts to regenerate tissues (e.g., bone, blood vessels) typically rely on the delivery of single factors, and this may partially explain the limited clinical utility of many current approaches. One constraint on delivering appropriate combinations of factors is a lack of delivery vehicles that allow for a localized and controlled delivery of more than a single factor. We report a new polymeric system that allows for the tissue-specific delivery of two or more growth factors, with controlled dose and rate of delivery. The utility of this system was investigated in the context of therapeutic angiogenesis. We now demonstrate that dual delivery of vascular endothelial growth factor (VEGF)-165 and platelet-derived growth factor (PDGF)-BB, each with distinct kinetics, from a single, structural polymer scaffold results in the rapid formation of a mature vascular network. This is the first report of a vehicle capable of delivery of multiple angiogenic factors with distinct kinetics, and these results clearly indicate the importance of multiple growth factor action in tissue regeneration and engineering.
Burg KJ, Holder WD, Culberson CR, Beiler RJ, Greene KG, Loebsack AB, Roland WD, Eiselt P, Mooney DJ, Halberstadt CR. Comparative study of seeding methods for three-dimensional polymeric scaffolds. J Biomed Mater Res. 2000;52 (3) :576.
Burg KJ, Holder WD, Culberson CR, Beiler RJ, Greene KG, Loebsack AB, Roland WD, Eiselt P, Mooney DJ, Halberstadt CR. Comparative study of seeding methods for three-dimensional polymeric scaffolds. J Biomed Mater Res. 2000;51 (4) :642-9.Abstract
Development of tissue-engineered devices may be enhanced by combining cells with porous absorbable polymeric scaffolds before implantation. The cells are seeded throughout the scaffolds and allowed to proliferate in vitro for a predetermined amount of time. The distribution of cells throughout the porous material is one critical component determining success or failure of the tissue-engineered device. This can influence both the successful integration of the device with the host tissue as well as the development of a vascularized network throughout the entire scaffold volume. This research sought to compare different seeding and proliferation methods to select an ideal method for a polyglycolide/aortic endothelial cell system. Two seeding environments, static and dynamic, and three proliferation environments, static, dynamic, and bioreactor, were analyzed, for a total of six possible methods. The six seeding and proliferation combinations were analyzed following a 1-week total culture time. It was determined that for this specific system, dynamic seeding followed by a dynamic proliferation phase is the least promising method and dynamic seeding followed by a bioreactor proliferation phase is the most promising.
Madsen S, Mooney DJ. Delivering DNA with polymer matrices: applications in tissue engineering and gene therapy. Pharm Sci Technolo Today. 2000;3 (11) :381-384.Abstract
DNA delivery from polymers is currently being applied to the multidisciplinary science of gene therapy and tissue engineering. This is motivated by the potential of treating a wide range of diseases and the provision of alternatives to tissue and organ transplantation. The combination of these fields involves the incorporation of genes into polymeric matrices that can be injected or implanted to promote tissue regeneration. This review presents an overview of current and developing polymer systems for gene delivery and tissue engineering.
Aframian DJ, Cukierman E, Nikolovski J, Mooney DJ, Yamada KM, Baum BJ. The growth and morphological behavior of salivary epithelial cells on matrix protein-coated biodegradable substrata. Tissue Eng. 2000;6 (3) :209-16.Abstract
The purpose of this study was to examine the growth and morphology of a salivary epithelial cell line (HSG) in vitro on several biodegradable substrata as an important step toward developing an artificial salivary gland. The substrates examined were poly-L-lactic acid (PLLA), polyglycolic acid (PGA), and two co-polymers, 85% and 50% PLGA, respectively. The substrates were formed into 20- to 25-mm disks, and the cells were seeded directly onto the polymers or onto polymers coated with specific extracellular matrix proteins. The two copolymer substrates became friable over time in aqueous media and proved not useful for these experiments. The purified matrix proteins examined included fibronectin (FN), laminin (LN), collagen I, collagen IV, and gelatin. In the absence of preadsorbed proteins, HSG cells did not attach to the polymer disks. The cells, in general, behaved similarly on both PLLA and PGA, although optimal results were obtained consistently in PLLA. On FN-coated PLLA disks, HSG cells were able to form a uniform monolayer, which was dependent on time and FN concentration. Coating of disks with LN, collagen I, and gelatin also promoted monolayer growth. This study defines the conditions necessary for establishing a monolayer organization of salivary epithelial cells with rapid proliferation on a biodegradable substrate useful for tissue engineering.
Baum BJ, Mooney DJ. The impact of tissue engineering on dentistry. J Am Dent Assoc. 2000;131 (3) :309-18.Abstract
BACKGROUND: Tissue engineering is a novel and highly exciting field of research that aims to repair damaged tissues as well as create replacement (bioartificial) organs. OVERVIEW: The authors provide a general review of the principles underlying key tissue engineering strategies, as well as the typical components used. Several examples of preclinical and clinical progress are presented. These include passive approaches, such as dental implants, and inductive approaches that activate cells with specific molecular signals. PRACTICE IMPLICATIONS: Tissue engineering will have a considerable effect on dental practice during the next 25 years. The greatest effects will likely be related to the repair and replacement of mineralized tissues, the promotion of oral wound healing and the use of gene transfer adjunctively.
Robey TC, Välimaa T, Murphy HS, Tôrmâlâ P, Mooney DJ, Weatherly RA. Use of internal bioabsorbable PLGA "finger-type" stents in a rabbit tracheal reconstruction model. Arch Otolaryngol Head Neck Surg. 2000;126 (8) :985-91.Abstract
OBJECTIVES: To design and develop a biodegradable tracheal stent that can be used internally to stabilize and support surgically reconstructed airways. DESIGN: In vitro mechanical and degradative properties of 80:20 poly(D,L-lactide-co-glycolide) (PLGA) "finger-like" stents were determined. The stents were then tested in vivo in rabbits that underwent anterior patch tracheoplasties with fascia lata grafts. Comparisons were made between a control group and an internal stent group for stridor development, overall group mortality, reconstructed airway lumen size, and histological findings. SUBJECTS: Twenty-five New Zealand white rabbits. RESULTS: The average dry modulus for the internal stents was 6800 kPa. All of the internal stents cracked by 4 weeks in buffer solution. Significant mass loss was not noted in vitro until after 5 weeks in buffer solution. By 14 weeks, the stents were nearly 100% degraded. The attrition rate for the control group was 23% compared with 17% for the experimental group. The stridor rate for the control group was also higher at 38% compared with 17% for the stented group. The stented rabbits had a significantly smaller average stenosis (23%) across the entire reconstruction site than the control group (34%) (P<.05). CONCLUSION: Biodegradable PLGA stents degrade in a predictable fashion and have a statistically significant effect in augmenting anterior patch tracheoplasties with fascia lata grafts in rabbits.
Sheridan MH, Shea LD, Peters MC, Mooney DJ. Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release. 2000;64 (1-3) :91-102.Abstract
Engineering new tissues utilizing cell transplantation on biodegradable polymer matrices is an attractive approach to treat patients suffering from the loss or dysfunction of a number of tissues and organs. The matrices must maintain structural integrity during the process of tissue formation, and promote the vascularization of the developing tissue. A number of molecules (angiogenic factors) have been identified that promote the formation of new vascular beds from endothelial cells present within tissues, and the localized, controlled delivery of these factors from a matrix may allow an enhanced vascularization of engineered tissues. We have developed a gas foaming polymer processing approach that allows the fabrication of three-dimensional porous matrices from bioabsorbable materials (e.g., copolymers of lactide and glycolide [PLG]) without the use of organic solvents or high temperatures. The effects of several processing parameters (e.g., gas type, polymer composition and molecular weight) on the process were studied. Several gases (CO(2), N(2), He) were utilized in the fabrication process, but only CO(2) resulted in the formation of highly porous, structurally intact matrices. Crystalline polymers (polylactide and polyglycolide) did not form porous matrices, while amorphous copolymers (50:50, 75:25, and 85:15 ratio of lactide:glycolide) foamed to yield matrices with porosity up to 95%. The mechanical properties of matrices were also regulated by the choice of PLG composition and molecular weight. Angiogenic factors (e.g., vascular endothelial growth factor) were subsequently incorporated into matrices during the fabrication process, and released in a controlled manner. Importantly, the released growth factor retains over 90% of its bioactivity. In summary, a promising system for the incorporation and delivery of angiogenic factors from three-dimensional, biodegradable polymer matrices has been developed, and the fabrication process allows incorporation under mild conditions.
Murphy WL, Kohn DH, Mooney DJ. Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro. J Biomed Mater Res. 2000;50 (1) :50-8.Abstract
Strategies to engineer bone have focused on the use of natural or synthetic degradable materials as scaffolds for cell transplantation or as substrates to guide bone regeneration. The basic requirements of the scaffold material are biocompatibility, degradability, mechanical integrity, and osteoconductivity. A major design problem is satisfying each of these requirements with a single scaffold material. This study addresses this problem by describing an approach to combine the biocompatibility and degradability of a polymer scaffold with the osteoconductivity and mechanical reinforcement of a bonelike mineral film. We report the nucleation and growth of a continuous carbonated apatite mineral on the interior pore surfaces of a porous, degradable polymer scaffold via a one step, room temperature incubation process. A 3-dimensional, porous scaffold of the copolymer 85:15 poly(lactide-co-glycolide) was fabricated by a solvent casting, particulate leaching process. Fourier transform IR spectroscopy and scanning electron microscopy (SEM) analysis after different incubation times in a simulated body fluid (SBF) demonstrate the growth of a continuous bonelike apatite layer within the pores of the polymer scaffold. Quantification of phosphate on the scaffold displays the growth and development of the mineral film over time with an incorporation of 0.43 mg of phosphate (equivalent to 0.76 mg of hydroxyapatite) per scaffold after 14 days in SBF. The compressive moduli of polymer scaffolds increased fivefold with formation of a mineral film after a 16-day incubation time as compared to control scaffolds. In summary, this biomimetic treatment provides a simple, one step, room temperature method for surface functionalization and subsequent mineral nucleation and growth on biodegradable polymer scaffolds for tissue engineering.
Brown AN, Kim BS, Alsberg E, Mooney DJ. Combining chondrocytes and smooth muscle cells to engineer hybrid soft tissue constructs. Tissue Eng. 2000;6 (4) :297-305.Abstract
Engineering new tissues using cell transplantation may provide a valuable tool for reconstructive surgery applications. Chondrocyte transplantation in particular has been successfully used to engineer new tissue masses due to the low metabolic requirements of these cells. However, the engineered cartilaginous tissue is too rigid for many soft tissue applications. We propose that hybrid tissue engineered from chondrocytes and smooth muscle cells could reflect mechanical properties intermediate between these two cell types. In this study, rat aortic smooth muscle cells and pig auricular chondrocytes were co-cultured on polyglycolic acid fiber-based matrices to address this hypothesis. Mixed cell suspensions were seeded by agitating the polymer matrices and a cell suspension with an orbital shaker. After seeding, cell-polymer constructs were cultured in stirred bioreactors for 8 weeks. The cell density and extracellular matrix (collagen, elastin, and glycosaminoglycan) content of the engineered tissues were determined biochemically. After 8 weeks in culture, the hybrid tissue had a high cell density (5.8 x 108 cells/cm(3)), and elastin (519 microg/g wet tissue sample), collagen (272 microg/g wet tissue sample), and glycosaminoglycan (GAG; 10 microg/g wet tissue sample) content. Mechanical testing indicated the compressive modulus of the hybrid tissues after 8 weeks to be 40.8 +/- 4.1 kPa and the equilibrium compressive modulus to be 8.4 +/- 0.8 kPa. Thus, these hybrid tissues exhibited intermediate stiffness; they were less stiff than native cartilage but stiffer than native smooth muscle tissue. This tissue engineering approach may be useful to engineer tissues for a variety of reconstructive surgery applications.
Kim SS, Sundback CA, Kaihara S, Benvenuto MS, Kim BS, Mooney DJ, Vacanti JP. Dynamic seeding and in vitro culture of hepatocytes in a flow perfusion system. Tissue Eng. 2000;6 (1) :39-44.Abstract
Our laboratory has investigated hepatocyte transplantation using biodegradable polymer matrices as an alternative treatment to end-stage liver disease. One of the major limitations has been the insufficient survival of an adequate mass of transplanted cells. This study investigates a novel method of dynamic seeding and culture of hepatocytes in a flow perfusion system. In experiment I, hepatocytes were flow-seeded onto PGA scaffolds and cultured in a flow perfusion system for 24 h. Overall metabolic activity and distribution of cells were assessed by their ability to reduce MTT. DNA quantification was used to determine the number of cells attached. Culture medium was analyzed for albumin content. In Experiment II, hepatocyte/polymer constructs were cultured in a perfusion system for 2 and 7 days. The constructs were examined by SEM and histology. Culture medium was analyzed for albumin. In experiment I, an average of 4.4 X 10(6) cells attached to the scaffolds by DNA quantification. Cells maintained a high metabolic activity and secreted albumin at a rate of 13 pg/cell/day. In experiment II, SEM demonstrated successful attachment of hepatocytes on the scaffolds after 2 and 7 days. Cells appeared healthy on histology and maintained a high rate of albumin secretion through day 7. Hepatocytes can be dynamically seeded onto biodegradable polymers and survive with a high rate of albumin synthesis in the flow perfusion culture system.
Eiselt P, Yeh J, Latvala RK, Shea LD, Mooney DJ. Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials. 2000;21 (19) :1921-7.Abstract
Macroporous scaffolds are typically utilized in tissue engineering applications to allow for the migration of cells throughout the scaffold and integration of the engineered tissue with the surrounding host tissue. A method to form macroporous beads with an interconnected pore structure from alginate has been developed by incorporating gas pockets within alginate beads, stabilizing the gas bubbles with surfactants, and subsequently removing the gas. Macroporous scaffolds could be formed from alginate with different average molecular weights (5-200 kDa) and various surfactants. The gross morphology, amount of interconnected pores, and total void volume was investigated both qualitatively and quantitatively. Importantly, macroporous alginate beads supported cell invasion in vitro and in vivo.