Publications

2003
Chen RR, Mooney DJ. Polymeric growth factor delivery strategies for tissue engineering. Pharm Res. 2003;20 (8) :1103-12.Abstract
PURPOSE: Tissue engineering seeks to replace and regrow damaged or diseased tissues and organs from either cells resident in the surrounding tissue or cells transplanted to the tissue site. The purpose of this review is to present the application of polymeric delivery systems for growth factor delivery in tissue engineering. METHODS: Growth factors direct the phenotype of both differentiated and stem cells, and methods used to deliver these molecules include the development of systems to deliver the protein itself, genes encoding the factor, or cells secreting the factor. RESULTS: Results in animal models and clinical trials indicate that these approaches may be successfully used to promote the regeneration of numerous tissue types. CONCLUSIONS: Controlling the dose, location, and duration of these factors through polymeric delivery strategies will dictate their utility in tissue regeneration.
Boontheekul T, Mooney DJ. Protein-based signaling systems in tissue engineering. Curr Opin Biotechnol. 2003;14 (5) :559-65.Abstract
Tissue engineering aims to replace damaged tissues or organs using either transplanted cells or host cells recruited to the target site. Protein signaling is crucial to regulate cell phenotype and thus engineered tissue structure and function. Biomaterial vehicles are being designed to incorporate and locally deliver various molecules involved in this signaling, including both growth factors and peptides that mimick whole proteins. Controlling the concentration, local duration and spatial distribution of these factors is key to their utility and efficacy. Recent advances have been made in the development of polymeric delivery systems intended to achieve this control.
Alsberg E, Kong HJ, Hirano Y, Smith MK, Albeiruti A, Mooney DJ. Regulating bone formation via controlled scaffold degradation. J Dent Res. 2003;82 (11) :903-8.Abstract
It is widely assumed that coupling the degradation rate of polymers used as cell transplantation carriers to the growth rate of the developing tissue will improve its quantity or quality. To test this hypothesis, we developed alginate hydrogels with a range of degradation rates by gamma-irradiating high-molecular-weight alginate to yield polymers of various molecular weights and structures. Decreasing the size of the polymer chains increased the degradation rate in vivo, as measured by implant retrieval rates, masses, and elastic moduli. Rapidly and slowly degrading alginates, covalently modified with RGD-containing peptides to control cell behavior, were then used to investigate the effect of biodegradation rate on bone tissue development in vivo. The more rapidly degrading gels led to dramatic increases in the extent and quality of bone formation. These results indicate that biomaterial degradability is a critical design criterion for achieving optimal tissue regeneration with cell transplantation.
2002
Murphy WL, Mooney DJ. Molecular-scale biomimicry. Nat Biotechnol. 2002;20 (1) :30-1.
Aframian DJ, Redman RS, Yamano S, Nikolovski J, Cukierman E, Yamada KM, Kriete MF, Swaim WD, Mooney DJ, Baum BJ. Tissue compatibility of two biodegradable tubular scaffolds implanted adjacent to skin or buccal mucosa in mice. Tissue Eng. 2002;8 (4) :649-59.Abstract
Radiation therapy for cancer in the head and neck region leads to a marked loss of salivary gland parenchyma, resulting in a severe reduction of salivary secretions. Currently, there is no satisfactory treatment for these patients. To address this problem, we are using both tissue engineering and gene transfer principles to develop an orally implantable, artificial fluid-secreting device. In the present study, we examined the tissue compatibility of two biodegradable substrata potentially useful in fabricating such a device. We implanted in Balb/c mice tubular scaffolds of poly-L-lactic acid (PLLA), poly-glycolic acid coated with PLLA (PGA/PLLA), or nothing (sham-operated controls) either beneath the skin on the back, a site widely used in earlier toxicity and biocompatibility studies, or adjacent to the buccal mucosa, a site quite different functionally and immunologically. At 1, 3, 7, 14, and 28 days postimplantation, implant sites were examined histologically, and systemic responses were assessed by conventional clinical chemistry and hematology analyses. Inflammatory responses in the connective tissue were similar regardless of site or type of polymer implant used. However, inflammatory reactions were shorter and without epithelioid and giant cells in sham-operated controls. Also, biodegradation proceeded more slowly with the PLLA tubules than with the PGA/PLLA tubules. No significant changes in clinical chemistry and hematology were seen due to the implantation of tubular scaffolds. These results indicate that the tissue responses to PLLA and PGA/PLLA scaffolds are generally similar in areas subjacent to skin in the back and oral cavity. However, these studies also identified several potentially significant concerns that must be addressed prior to initiating any clinical applications of this device.
Rowley JA, Mooney DJ. Alginate type and RGD density control myoblast phenotype. J Biomed Mater Res. 2002;60 (2) :217-23.Abstract
Alginates are being increasingly used for cell encapsulation and tissue engineering applications; however, these materials cannot specifically interact with mammalian cells. We have covalently modified alginates of varying monomeric ratio with RGD-containing cell adhesion ligands using carbodiimide chemistry to initiate cell adhesion to these polymers. We hypothesized that we could control the function of cells adherent to RGD-modified alginate hydrogels by varying alginate polymer type and cell adhesion ligand density, and we have addressed this possibility by studying the proliferation and differentiation of C2C12 skeletal myoblasts adherent to these materials. RGD density on alginates of varying monomeric ratio could be controlled over several orders of magnitude, creating a range of surface densities from 1-100 fmol/cm(2). Myoblast adhesion to these materials was specific to the RGD ligand, because adhesion could be competed away with soluble RGD in a dose-dependent manner. Myoblast proliferation and differentiation could be regulated by varying the alginate monomeric ratio and the density of RGD ligands at the substrate surface, and specific combinations of alginate type and RGD density were required to obtain efficient myoblast differentiation on these materials.
Murphy WL, Mooney DJ. Bioinspired growth of crystalline carbonate apatite on biodegradable polymer substrata. J Am Chem Soc. 2002;124 (9) :1910-7.Abstract
Mineralization in biological systems is a widespread, yet incompletely understood phenomenon involving complex interactions at the biomacromolecule-mineral nucleus interface. This study was aimed at understanding and controlling mineral formation in a poly(alpha-hydroxy ester) model system, to gain insight into biological mineralization processes and to develop biomaterials for orthopaedic tissue regeneration. We specifically hypothesized that providing a high surface density of anionic functional groups would enhance nucleation and growth of bonelike mineral following exposure to simulated body fluids (SBF). Polymer surface functionalization was achieved via hydrolysis of 85:15 poly(lactide-co-glycolide) (PLG) films. This treatment led to an increase in surface carboxylic acid and hydroxyl groups, resulting in a substantial increase in polymer surface energy from 42 to 49 dynes/cm2. Treated polymers exhibited a 3-fold increase in heterogeneous mineral grown and growth of a continuous mineral film on the polymer surface. The mineral grown on PLG surfaces is a carbonate apatite, the major mineral component of vertebrate bone tissue. Mineral crystal size and morphology were dependent on the solution characteristics but unaffected by the degree of surface prehydrolysis. The mechanism of heterogeneous carbonate apatite growth was examined via ion binding assays, which indicated that calcium binding is mediated independently by the presence of soluble phosphate counterions and surface functional groups. These findings indicate that poly(alpha-hydroxy ester) materials can be readily mineralized using a biomimetic process, and that the impetus for mineral nucleation in this system appears more complicated than the simple electrostatic interactions proposed in previous biomineralization theory.
Alsberg E, Anderson KW, Albeiruti A, Rowley JA, Mooney DJ. Engineering growing tissues. Proc Natl Acad Sci U S A. 2002;99 (19) :12025-30.Abstract
Regenerating or engineering new tissues and organs may one day allow routine replacement of lost or failing tissues and organs. However, these engineered tissues must not only grow to fill a defect and integrate with the host tissue, but often they must also grow in concert with the changing needs of the body over time. We hypothesized that tissues capable of growing with time could be engineered by supplying growth stimulus signals to cells from the biomaterial used for cell transplantation. In this study, chondrocytes and osteoblasts were cotransplanted on hydrogels modified with an RGD-containing peptide sequence to promote cell multiplication. New bone tissue was formed that grew in mass and cellularity by endochondral ossification in a manner similar to normal long-bone growth. Transplanted cells organized into structures that morphologically and functionally resembled growth plates. These engineered tissues could find utility in treating diseases and injuries of the growth plate, testing the effect of experimental drugs on growth-plate function and development, and investigating the biology of long-bone growth. Furthermore, this concept of promoting the growth of engineered tissues could find great utility in engineering numerous tissue types by way of the transplantation of a small number of precursor cells.
Peters MC, Polverini PJ, Mooney DJ. Engineering vascular networks in porous polymer matrices. J Biomed Mater Res. 2002;60 (4) :668-78.Abstract
Enhanced vascularization is critical to the treatment of ischemic tissues and the engineering of new tissues and organs. We have investigated whether sustained and localized delivery of vascular endothelial growth factor (VEGF) combined with transplantation of human microvascular endothelial cells (HMVECs) can be used to engineer new vascular networks. VEGF was incorporated and released in a sustained manner from porous poly(lactic-co-glycolic acid) (PLG) matrices to promote angiogenesis at the transplantation site. VEGF could be incorporated and released in a biologically active form from PLG matrices, with the majority of VEGF release (64%) occurring within 2 weeks. These matrices promoted a 260% increase in the density of host SCID mouse-derived capillaries invading the matrices after 7 days of implantation, confirming the activity of the released VEGF. HMVECs were transplanted into SCID mice on PLG matrices, and organized to form immature human-derived vessels within 3 days. Functional vessels were observed within 7 days. Importantly, when HMVECs were transplanted on VEGF-releasing matrices, a 160% increase in the density of human-derived blood vessels was observed after 14 days. These findings suggest that combining elements of vasculogenesis and angiogenesis provides a viable and novel approach to enhancing local vascularization.
Cunningham JJ, Nikolovski J, Linderman JJ, Mooney DJ. Quantification of fibronectin adsorption to silicone-rubber cell culture substrates. Biotechniques. 2002;32 (4) :876, 878, 880 passim.Abstract
As the role of mechanical force in cellular signaling gained recognition, investigators designed a number of devices to deliver controlled regimens of mechanical force to cultured cells. One type of device uses thin silicone-rubber membranes to support monolayer cell adhesion and to transmit mechanical force in the form of biaxial strain. We have observed that cell attachment and spreading are impaired on these membranes compared to polystyrene, even when both are passively coated with identical amounts of extracellular matrix. The purpose of these studies was to quantify the efficiency and stability of passive matrix adsorption onto commercially available elastic culture substrates. A theoretically saturating density (1 microg/cm2) of fibronectin was added to each well, and the initial efficiency of adsorption to the walls and elastic membranes was found to be 31 +/- 2% of the protein added. Strikingly, when the protein adsorbed specifically to the membranes was quantified after seven days, only 10-26 ng/cm2 fibronectin were present, revealing that most of the adsorption is to the sides of the wells. These results indicate that the adsorption of matrix proteins to silicone-rubber substrates is relatively inefficient and that investigators who use these systems must be aware of this fact and design their experiments accordingly.
Murphy WL, Dennis RG, Kileny JL, Mooney DJ. Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Eng. 2002;8 (1) :43-52.Abstract
Macroporous scaffolds composed of biodegradable polymers have found extensive use as three-dimensional substrates either for in vitro cell seeding followed by transplantation, or as conductive substrates for direct implantation in vivo. Methods abound for creation of macroporous scaffolds for tissue engineering, and common methods typically employ a solid porogen within a three-dimensional polymer matrix to create a well-defined pore size, pore structure, and total scaffold porosity. This study describes an approach to impart improved pore interconnectivity to polymer scaffolds for tissue engineering by partially fusing the solid porogen together prior to creation of a continuous polymer matrix. Three dimensional, porous scaffolds of the copolymer 85:15 poly(lactide-co-glycolide) were fabricated via either a solvent casting/particulate leaching process, or a gas foaming/particulate leaching process. Prior to creation of a continuous polymer matrix the NaCl crystals, which serve as the solid porogen, are partially fused via treatment in 95% humidity. Scanning electron micrographs clearly display fused salt crystals and an enhancement in pore interconnectivity in the salt fused scaffolds prepared via both solvent casting and gas foaming, and the extent of pore interconnectivity is enhanced with longer treatment times. Fusion of salt crystal for 24 h increased the radius of curvature of salt crystals, and led to a twofold increase in the compressive modulus of solvent cast scaffolds (total porosity of 97 +/- 1%). Fusion of NaCl crystals prior to gas foaming resulted in a decrease in scaffold compressive modulus from 277 +/- 60k Pa to 187 +/- 30k Pa (total porosity of 94 +/- 1%). The resulting highly interconnected scaffolds have implications for facilitated cell migration, abundant cell-cell interaction, and potentially improved neural and vascular growth within tissue engineering scaffolds.
Lee KY, Bouhadir KH, Mooney DJ. Evaluation of chain stiffness of partially oxidized polyguluronate. Biomacromolecules. 2002;3 (6) :1129-34.Abstract
The chain stiffness of macromolecules is considered critical in their design and applications. This study utilizes polyguluronate derived from alginate, a typical polysaccharide widely utilized in many biomedical applications, as a model macromolecule to investigate how the chain stiffness can be tightly regulated by partial oxidation. Alginate has a backbone of inherently rigid alpha-L-guluronate (i.e., polyguluronate) and more flexible beta-D-mannuronate. The chain stiffness of the polyguluronate was specifically studied in this paper, as this component plays a critical role in the formation of alginate hydrogels with divalent cations and is the dominant factor in determining the chain stiffness of alginate. We have utilized size-exclusion chromatography, equipped with refractive index, viscosity, and light-scattering detectors, to determine the intrinsic viscosity and the weight-average molecular weight of each fraction of samples. The chain stiffness of partially oxidized polyguluronate was then evaluated from the exponent of the Mark-Houwink equation and the persistence length. We have found that partial oxidation can be used to tightly regulate the steric hindrance and stiffness of the polyguluronate backbone. This approach to control the chain stiffness of inherently rigid polysaccharides by partial oxidation may find many applications in biomedical utilization of these materials.
Cunningham JJ, Linderman JJ, Mooney DJ. Externally applied cyclic strain regulates localization of focal contact components in cultured smooth muscle cells. Ann Biomed Eng. 2002;30 (7) :927-35.Abstract
Mechanical signals are critical regulators of cellular gene expression, yet little is understood of the mechanism whereby cells sense mechanical forces. In this study we have tested the hypothesis that mechanical strain applied to populations of cells via their adhesion substrate rapidly alters the cellular distribution of focal contact proteins. Focal contact-associated components (vinculin, a-actinin, paxillin) were assayed by immunofluorescence microscopy and quantitative western blotting. Application of a single step increase in strain in multiple experiments caused overall a small change in focal contact-associated vinculin. In contrast, cyclic strain induced a large and very reproducible increase in detergent-insoluble vinculin (52% relative to static) after just 1 min of strain. Insoluble paxillin was transiently enriched with a similar time course, whereas insoluble a-actinin did not change significantly in response to cyclic strain. Rhodamine-labeled chicken vinculin added to permeabilized cells preferentially localized to focal contacts in response to cyclic strain, but not a single step increase in strain. These findings establish that insoluble levels of focal contact components are altered rapidly following application of an appropriate number of mechanical perturbations, and suggest that at least one component of the mechanism does not involve soluble intermediates.
Ennett AB, Mooney DJ. Tissue engineering strategies for in vivo neovascularisation. Expert Opin Biol Ther. 2002;2 (8) :805-18.Abstract
Neovascularisation is a promising alternative therapeutic approach to re-establish blood flow in ischaemic tissues of patients suffering from coronary artery or peripheral artery disease. Often, these patients are not suitable candidates for current revascularisation procedures such as coronary angioplasty or bypass surgery. Several strategies are presently under investigation to induce vascularisation by stimulating the body's natural processes of vasculogenesis, angiogenesis and arteriogenesis. These strategies involve transplantation of various cell types into the ischaemic site and the delivery of recombinant angiogenic agents through direct protein administration or gene transfer. We will examine the basic approaches for these neovacularisation strategies and their therapeutic potential as demonstrated in animal models and human trials to date.
2001
Chang SC, Rowley JA, Tobias G, Genes NG, Roy AK, Mooney DJ, Vacanti CA, Bonassar LJ. Injection molding of chondrocyte/alginate constructs in the shape of facial implants. J Biomed Mater Res. 2001;55 (4) :503-11.Abstract
Over one million patients per year undergo some type of procedure involving cartilage reconstruction. Polymer hydrogels, such as alginate, have been shown to be effective carriers for chondrocytes in subcutaneous cartilage formation. The goal of our current study was to develop a method to create complex structures (nose bridge, chin, etc.) with good dimensional tolerance to form cartilage in specific shapes. Molds of facial implants were prepared using Silastic ERTV. Suspensions of chondrocytes in 2% alginate were gelled by mixing with CaSO(4) (0.2 g/mL) and injected into the molds. Constructs of various cell concentrations (10, 25, and 50 million/mL) were implanted in the dorsal aspect of nude mice and harvested at times up to 30 weeks. Analysis of implanted constructs indicated progressive cartilage formation with time. Proteoglycan and collagen constructs increased with time to approximately 60% that of native tissue. Equilibrium modulus likewise increased with time to 15% that of normal tissue, whereas hydraulic permeability decreased to 20 times that of native tissue. Implants seeded with greater concentrations of cells increased proteoglycan content and collagen content and equilibrium and decreased permeability. Production of shaped cartilage implants by this technique presents several advantages, including good dimensional tolerance, high sample-to-sample reproducibility, and high cell viability. This system may be useful in the large-scale production of precisely shaped cartilage implants.
Shea LD, Mooney DJ. Nonviral DNA delivery from polymeric systems. Methods Mol Med. 2001;65 :195-207.Abstract
Gene therapy holds great promise for the treatment of disease by delivering genes encoding for therapeutic proteins. Although it was originally devised for the treatment of inherited genetic disorders, such as cystic fibrosis, recent work has expanded the applications of gene therapy to develop strategies for HIV, cancer (1), and wound healing applications (2). The challenge of gene therapy is to develop safe and efficient gene delivery systems (1). Most studies have focused on the use of viral vectors because of their potentially high efficiencies; however, the safety and ease of manufacturing of nonviral vectors may make them the preferred choice in the future.
Bouhadir KH, Mooney DJ. Promoting angiogenesis in engineered tissues. J Drug Target. 2001;9 (6) :397-406.Abstract
There is a tremendous need for organs and tissues to replace those lost due to diseases or trauma. In theory, transplanting cells on biomaterial matrices can create functional tissue. A critical question, however, is how to supply cells embedded within large cell-polymer constructs with sufficient oxygen and nutrients to sustain their survival and proliferation, and allow for the integration of the developing tissue with the surrounding tissue. A rapid and high level of vascularization of transplanted polymer-cell matrices is essential in tissue engineering approaches to meet these challenges. This review summarizes the current approaches and materials under development in our laboratory to promote angiogenesis in engineered tissues.
Aframian DJ, Zheng C, Goldsmith CM, Nikolovski J, Cukierman E, Yamada KM, Mooney DJ, Birkedal-Hansen H, Baum BJ. Using HSV-thymidine kinase for safety in an allogeneic salivary graft cell line. Tissue Eng. 2001;7 (4) :405-13.Abstract
Extreme salivary hypofunction is a result of tissue damage caused by irradiation therapy for cancer in the head and neck region. Unfortunately, there is no currently satisfactory treatment for this condition that affects up to 40,000 people in the United States every year. As a novel approach to managing this problem, we are attempting to develop an orally implantable, fluid-secreting device (an artificial salivary gland). We are using the well-studied HSG salivary cell line as a potential allogeneic graft cell for this device. One drawback of using a cell line is the potential for malignant transformation. If such an untoward response occurred, the device could be removed. However, in the event that any HSG cells escaped, we wished to provide additional patient protection. Accordingly, we have engineered HSG cells with a hybrid adeno-retroviral vector, AdLTR.CMV-tk, to express the herpes simplex virus thymidine kinase (HSV-tk) suicide gene as a novel safety factor. Cells were grown on plastic plates or on poly-L-lactic acid disks and then transduced with different multiplicities of infection (MOIs) of the hybrid vector. Thereafter, various concentrations of ganciclovir (GCV) were added, and cell viability was tested. Transduced HSG cells expressed HSV-tk and were sensitive to GCV treatment. Maximal effects were seen at a MOI of 10 with 50 microM of GCV, achieving 95% cell killing on the poly-L-lactic acid substrate. These results suggest that engineering the expression of a suicide gene in an allogeneic graft cell may provide additional safety for use in an artificial salivary gland device.
Putnam AJ, Schultz K, Mooney DJ. Control of microtubule assembly by extracellular matrix and externally applied strain. Am J Physiol Cell Physiol. 2001;280 (3) :C556-64.Abstract
A number of studies have suggested that externally applied mechanical forces and alterations in the intrinsic cell-extracellular matrix (ECM) force balance equivalently induce changes in cell phenotype. However, this possibility has never been directly tested. To test this hypothesis, we directly investigated the response of the microtubule (MT) cytoskeleton in smooth muscle cells to both mechanical signals and alterations in the ECM. A tensile force that resulted in a positive 10% step change in substrate strain increased MT mass by 34 +/- 10% over static controls, independent of the cell adhesion ligand and tyrosine phosphorylation. Conversely, a compressive force that resulted in a negative 10% step change in substrate strain decreased MT mass by 40 +/- 6% over static controls. In parallel, increasing the density of the ECM ligand fibronectin from 50 to 1,000 ng/cm(2) in the absence of any applied force increased the amount of polymeric tubulin in the cell from 59 +/- 11% to 81 +/- 13% of the total cellular tubulin. These data are consistent with a model in which MT assembly is, in part, controlled by forces imposed on these structures, and they suggest a novel control point for MT assembly by altering the intrinsic cell-ECM force balance and applying external mechanical forces.
Alsberg E, Hill EE, Mooney DJ. Craniofacial tissue engineering. Crit Rev Oral Biol Med. 2001;12 (1) :64-75.Abstract
There is substantial need for the replacement of tissues in the craniofacial complex due to congenital defects, disease, and injury. The field of tissue engineering, through the application of engineering and biological principles, has the potential to create functional replacements for damaged or pathologic tissues. Three main approaches to tissue engineering have been pursued: conduction, induction by bioactive factors, and cell transplantation. These approaches will be reviewed as they have been applied to key tissues in the craniofacial region. While many obstacles must still be overcome prior to the successful clinical restoration of tissues such as skeletal muscle and the salivary glands, significant progress has been achieved in the development of several tissue equivalents, including skin, bone, and cartilage. The combined technologies of gene therapy and drug delivery with cell transplantation will continue to increase treatment options for craniofacial cosmetic and functional restoration.

Pages